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CHAPTER 1

First-order differential equations

The Italian physicist Galileo Galilei famously said that the world is written in the language
of mathematics. As it stands, this assertion is certainly questionable from a philosophical
standpoint; however it is not controversial that the universe is read in mathematical language,
which is to say, the physical laws governing it are formulated and studied in mathematical
terms.

Whilst elementary algebra, in the form of standard equations, is sufficient to analyze most
static problems, it is ill-suited to the understanding of dynamical phenomena, involving phys-
ical quantities which change over time. For those, the concept of differentiation, one of the
foundational notions of calculus, naturally enters the picture, as it formalizes mathematically
the intuition of infinitesimal rate of change of a certain quantity. An overwhelming majority
of the laws of nature, such as Newton’s law of gravitation or Maxwell’s equations for electro-
magnetism, express the instantaneous rate of change of a given quantity of interest in terms of
other variables of the problem, which might be, for instance, the time variable and the physical
quantity under investigation itself. We shall see a wealth of incarnations of this general formu-
lation, starting already with §1.1; in mathematical language, laws of this kind are expressed
via differential equations, the core topic of this course.

1.1. Differential equations and mathematical models

1.1.1. Some introductory examples. As already alluded to in the introduction to this
chapter, a differential equation is a mathematical identity relating a certain unknown function
to its derivatives of higher order. For the most part of this course, we shall be interested in
functions of a single real variable; differential equations involving those are called ordinary, as
opposed to partial differential equations, the subject of the last chapter of this course, where
the unknown is a function of several real variables and the equation relates such function to its
partial derivatives of higher order.

Before giving the abstract definition of an ordinary differential equation, let us have a look
at a few motivating examples.

Example 1.1.1. The equation

x′(t) = 2x(t)− t

involves an unknown function x(t), of the independent variable t, and its derivative x′(t). We
shall classify this example as a first-order differential equation.

Example 1.1.2. The equation

y′′(t) + y′(t)− 3y(t) = cos t

features an unknown function y(t) together with its first two derivatives y′(t), y′′(t). We shall
refer to it as a second-order differential equation.

Example 1.1.3. Consider the equation

y′(x) = 3x2y(x) , (1.1.1)
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6 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

which involves an unknown function y(x) and its derivative y′(x). Let us verify that the one-
parameter family1 of functions

y(x) = Cex
3

, (1.1.2)

where C is a constant allowed to range over all real numbers, gives an infinite set of solutions
to the equation, namely of functions verifying the identity in (1.1.1). To this end, let’s compute
the derivative y′(x) of y(x) using the familiar chain rule:

y′(x) = Cex
3

(3x2) .

We immediately realize that the latter expression equals precisely 3x2y(x), as desired.

Notice that, in the last example, we encountered infinitely many different functions satisfy-
ing the given equation. We shall see that this is a typical feature of differential equations2. For
the moment, we might ask ourselves: are the functions in (1.1.2) the only possible solutions
to (1.1.2), or are there any others? over the course of this chapter, we shall learn a variety
of methods to explicitly solve differential equations such as the one under consideration here,
which will enable us to conclude that, in this specific example, there are no solutions other
than the ones in (1.1.2).

1.1.2. Mathematical modelling through differential equations. We shall now present
two introductory examples of mathematical modeling of a physical phenomenon governed by a
law which lends itself to a formulation via a differential equation.

Example 1.1.4 (Newton’s law of cooling). In thermodynamics, Newton’s law of cooling
describes the time evolution of the temperature of an object in terms of the temperature of
the surrounding environment, such as a hot rock immersed in a glass of cold water. If the
surrounding medium is substantially larger than the object under scrutiny, it is physically rea-
sonable to assume that the ambient temperature remains constant in time, namely is unaltered
by the interaction with the smaller object. Newton’s law of cooling then asserts that the rate
of change of the temperature of the object is directly proportional to the difference between
the temperature of the object and the one of the ambient space.

Let us model this phenomenon mathematically, specifically let us phrase Newton’s law in
mathematical terms. Let A denote the temperature of the environment. If T (t) indicates the
temperature of the object at time t, then its rate of change is expressed, as is well known from
earlier Calculus courses, by the derivative T ′(t). We may thus formulate Newton’s law as the
differential equation

T ′(t) = −k(T (t)− A)

for a certain proportionality constant k > 0 (which is part of the physical data of the problem).
The reason for the sign of the proportionality constant, which is negative (beware the minus
sign in front of the k), is of physical nature: it is well known from experimental evidence
that the temperature of the object will increase if it is lower than the one of the environment
(T (t) < A implies T ′(t) > 0), and decrease if it is higher (T (t) > A implies T ′(t) < 0).

Example 1.1.5 (Torricelli’s law). In fluid dynamics, Torricelli’s law states that the instan-
taneous rate of change of the volume of a liquid inside a draining tank is proportional to the
square root of the depth of the liquid. Let us model Torricelli’s law by means of an ODE,
assuming for simplicity that the draining tank has cylindrical shape with cross-sectional area
A > 0. Let V (t) and y(t) denote, respectively, the volume and the depth of the liquid at time
t. Then the law asserts that

V ′(t) = −k
»
y(t) (1.1.3)

1The reason for the terminology is obvious: the given family of functions is described by a single real
parameter C.

2By way of contrast, usual algebraic equations such as polynomial equations in one variable have at most
finitely many solutions.
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for some positive constant k > 0 (the amount of water in the tank is decreasing, thus V ′(t)
must be negative).

At first sight, the differential relation (1.1.3) doesn’t look like the differential equations we
have encountered so far, in that there appear to be two unknown functions, namely V (t) and
y(t). However, since the shape of the tank is cylindrical, there is a clear additional relation
between the volume and the depth of the liquid, which is V (t) = Ay(t). Since A is constant in
time, (1.1.3) translates into

Ay′(t) = −k
»

y(t) ,

which is now a differential equation of the single unknown function y(t).

We now present an example where a differential equation models a problem of geometric
nature.

Example 1.1.6. Let g(x) be a real-valued function of a real variable. Suppose g satisfies
the following geometric condition: for every point (x, y) in the graph3 of g, the tangent line to
the graph of g at (x, y) passes through the point (−y, x). We shall see how to translate this
geometric condition on the graph of g into a differential equation which is satisfied, that is,
solved by g.

Fix a point (x, y) in the graph of g; this means that y = g(x). We begin by finding the
equation for the tangent line to the graph of g at the point (x, g(x)), after which we are going
to impose that such line passes through (−y, x) = (−g(x), x). By definition, the sought after
tangent line contains the point (x, g(x)) and has slope given by the derivative g′(x) at the point
x: its equation, using new variables s and t to avoid confusion, is thus

t(s) = g′(x)(s− x) + g(x) , (1.1.4)

where we emphasize once again that x is fixed and s is the variable in the equation. If we
impose now the condition that (−g(x), x) lies on such tangent line, we obtain from (1.1.4) the
relation

x = g′(x)(−g(x)− x) + g(x) ,

which is a bona fide ordinary differential equation, of the first order, satisfied by g(x). Solving
such an equation allows thus to determine all possible differentiable functions whose graph
satisfies the geometric property phrased at the beginning.

1.1.3. A general framework for ordinary differential equations. We are now ready
to give the formal definition of ordinary differential equation.

Definition 1.1.7 (Ordinary differential equation). An ordinary differential equation
(henceforth routinely abbreviated ODE) is an equation of the form

F (x, y(x), y′(x), . . . , y(n)(x)) = 0 (1.1.5)

where n ≥ 1 is an integer, F is a real-valued continuous function of n + 2 real variables, and
y(x) is the unknown function of the equation, which appears in it together with its derivatives
y′(x), y′′(x), . . . , y(n)(x) and with the independent variable x.

The integer n is called the order of the ODE (1.1.5).

We shall say that (1.1.5) is an n-th order ODE; n corresponds to the highest order derivative
appearing in the given ODE.

Example 1.1.8. To digest the abstract definition, let us place the examples encountered so
far within the general framework described by Definition 1.1.7.

3Recall that the graph of a function h(x) is the set of pairs (x, h(x)), which are pictorially identified with
points in the xy-plane, where x varies over the domain of definition of h.
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(1) The equation
y′(x) = 2y(x)− x

which, upon renaming the unknown function and the independent variable, is precisely
the one treated in Example 1.1.1, takes the form (1.1.5) for n = 1 and F (t1, t2, t3) =
−t1+2t2−t3, a real-valued function of three real variables t1, t2, t3. Indeed, the equation
F (x, y(x), y′(x)) = 0 amounts precisely to

0 = −x+ 2y(x)− y′(x) , that is, y′(x) = 2y(x)− x .

Since the integer n is equal to 1 in this case, we have an example of a first-order
differential equation.

(2) The equation
y′′(x) + y′(x)− 3y(x) = cos x ,

already discussed in Example 1.1.2, takes the form (1.1.5) for n = 2 and F (t1, t2, t3, t4) =
cos t1 +3t2 − t3 − t4; to check this, simply plug the variables (x, y(x), y′(x), y′′(x)) into
(t1, t2, t3, t4), so as to obtain

0 = cos x+ 3y(x)− y′(x)− y′′(x) , that is, y′′(x) + y′(x)− 3y(x) = cos x .

As n = 2, this is an example of a second-order ODE.
(3) Newton’s law of cooling (Example 1.1.4) is expressed by the differential equation

y′(x) = −k(y(x)− A)

for given constants k and A. It is straightforward to verify, as in the two examples
above, that we obtain the equation in the form (1.1.5) for n = 1 and F (t1, t2, t3) =
k(t2 − A) + t3; it is a first-order ODE.

(4) Torricelli’s law (Example 1.1.5) is expressed by the differential equation

Ay′(x) = −k
»

y(x)

for given constants k and A. The equation takes the form (1.1.5) for n = 1 and
F (t1, t2, t3) = k

√
t2 + At3; it is a first-order ODE.

We now formalize the rather intuitive notion of solution of an ODE. By an open interval in
R we mean any set of real numbers of the form (a, b), thus with the boundary points a and b
excluded, where a is a real number or a = −∞ and b > a is a real number, potentially b = +∞.

Definition 1.1.9 (Solution of an ODE). A solution of an ODE

F (x, y(x), y′(x), . . . , y(n)(x)) = 0

is a real-valued function u(x) of a single real variable x, defined on some open interval I ⊂ R,
which is n-times continuously differentiable4 on I and satisfies the equality

F (x, u(x), . . . , u(n)(x)) = 0 for every x ∈ I.

Example 1.1.10. Consider the function

u(x) =
1

C − x
, (1.1.6)

where C is an arbitrary real constant. Since

u′(x) =
1

(C − x)2
,

we deduce that u(x) is a solution to the differential equation

y′(x) = y2(x) .

It is defined over two separate open intervals, namely (−∞, C) and (C,+∞). As C varies in
R, (1.1.6) describes a one-parameter family of solutions to the given first-order ODE.

4That is, it can be differentiated n times, and its n-th order derivative u(n)(x) is continuous.
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Example 1.1.11. Let us verify that the function

u(x) = xe−x

is a solution, defined over the whole real line, of the second-order ODE

y′′(x) + 2y′(x) + y(x) = 0 .

We compute first
u′(x) = e−x − xe−x = (1− x)e−x

via the product rule for derivatives, and similarly

u′′(x) = −e−x − (1− x)e−x = e−x(x− 2) .

Therefore, we obtain

u′′(x) + 2u′(x) + u(x) = e−x(x− 2) + e−x(2− 2x) + xe−x = e−x(x− 2 + 2− 2x+ x) = 0 ,

which shows that u(x) = xe−x solves the given ODE.
Observe that the function

v(x) = e−x

is also a solution: indeed, we have v′(x) = −e−x and v′′(x) = e−x, so that

v′′(x) + 2v′(x) + v(x) = e−x − 2e−x + e−x = 0 ,

as desired.

In general, an ordinary differential equation may fail to admit any solution. For instance,
the first-order ODE

y′2(x) + y2(x) = −1

does not admit any solution. Indeed, the square of any real number is nonnegative, whence

u′2(x) + u2(x) ≥ 0

for any differentiable function u(x).
It may also be the case that an ODE admits just one solution. This happens, for instance,

of the second-order ODE
y′′2(x) + y2(x) = 0 ,

which is only solved by the constant function u = 0.
The last two are, however, rather pathological examples; as we will amply discuss in the

sequel, it is standard for an n-th order ODE to admit an n-parameter family of solutions,
namely a collection of solutions which is described by n distinct real parameters.

Example 1.1.12. Let us go back to Example 1.1.11, i.e., to the second-order differential
equation

y′′(x) + 2y′(x) + y(x) = 0 . (1.1.7)

We have verified that the two functions

u1(x) = e−x , u2(x) = xe−x

are solutions to the equation. Linearity of derivatives allows us to deduce that any function of
the form

u(x) = C1u1(x) + C2u2(x) , (1.1.8)

where C1 and C2 are distinct real constants, is a solution: indeed, we compute

u′′(x) + 2u′(x) + u(x) = (C1u1(x) + C2u2(x))
′′ + 2(C1u1(x) + C2u2(x))

′ + C1u1(x) + C2u2(x)

= C1u
′′
1(x) + C2u

′′
2(x) + 2(C1u

′
1(x) + C2u

′
2(x)) + C1u1(x) + C2u2(x) ;

rearranging terms appropriately, we obtain

u′′(x) + 2u′(x) + u(x) = C1(u
′′
1(x) + 2u′

1(x) + u1(x)) + C2(u
′′
2(x) + 2u′

2(x) + u2(x))

= C1 · 0 + C2 · 0 = 0 ,



10 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

as claimed.
We have thus found a two-parameter family of solutions to the second-order ODE (1.1.7);

we shall develop solving strategies for such kind of equations which will enables us to ascertain
that there are no other solutions, so that (1.1.8) completely describes the set of solutions to
the given ODE.

1.1.4. Equilibrium solutions. One of the main goals of this course is to learn to analy-
size properties of solutions to differential equations. The most basic solutions to conceive are
constant solutions.

Definition 1.1.13 (Equilibrium solution). A solution u(x) of an ordinary differential equa-
tion

F (x, y(x), y′(x), . . . , y(n)(x)) = 0 ,

defined over a certain open interval I ⊂ R, is called an equilibrium solution, or simply an
equilibrium, if there is a real number C such that u(x) = C for all x ∈ I.

It shall be important, whenever we attempt to study an ODE, to first single out its equilib-
rium solutions, if there are any. This will often be a basic step before implementing appropriate
methods to find all other solutions.

Suppose the constant function u(x) = C is a solution to the ODE

F (x, y(x), . . . , y(n)(x)) = 0 ;

by definition, this means that

0 = F (x, u(x), u′(x), . . . , u(n)(x)) = F (x,C, 0, . . . , 0) ,

the last equality holding since all derivatives of a constant function vanish identically. Therefore,
the real number C is a solution to the functional equation

F (x,C, 0, . . . , 0) = 0 ,

meaning that F (x,C, 0, . . . , 0) = 0 for all x in the domain of definition of F . Conversely, it is
clear that if C ∈ R solves the last displayed equation, then the constant function u(x) = C is
a solution to the given ODE.

Example 1.1.14. Let’s determine all equilibrium solutions of the first-order ODE

y′(x) = (M − y(x))(y2(x)− 3y(x) + 2) ,

where M is a given real number. A constant function u(x) = C solves the equation if and only
if

0 = u′(x) = (M − C)(C2 − 3C + 2) = (M − C)(C − 1)(C − 2) ,

which is an algebraic equation in the variable C with solutions C = 1, C = 2 and C = M .
Therefore the equilibrium solutions of the ODE at hand are

u(x) = 1 , u(x) = 2 , u(x) = M .

Example 1.1.15. Consider the second-order ODE

y′′(x)− y′(x) + 3ky(x) = 0 ,

where k ∈ R is given. Let’s determine the equilibrium solutions: a constant function u(x) = C
solves the ODE if and only if

0 = u′′(x)− u′(x) + 3ku(x) = 0 + 0 + 3kC = 3kC .

We have thus two distinct regimes according to the value of k: if k ̸= 0, then the last displayed
algebraic equation is only solved for C = 0, which produces the unique equilibrium solution

u(x) = 0 .
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On the other hand, if k = 0, then the equation 0 = 3kC is always verified, no matter the value
of C; in this case, we thus have a one-parameter family of equilibrium solutions to the given
ODE,

u(x) = C , C ∈ R.

Example 1.1.16. Consider the first-order ODE

y′(x) = y(x) cosx− ex .

Let u(x) = C be a constant function: can it be a solution to the given equation? For it to be
the case, we must have

0 = u′(x) = u(x) cosx− ex = C cosx− ex ,

for all real values of x. It is clear that there exists no real number C for which this is verified,
since C cosx is a bounded function, whereas ex is unbounded. Thus, the given ODE has no
equilibrium solutions.

1.1.5. Initial value problems. In applications, differential equations customarily appear
in conjunction with initial conditions : in the study of the time-evolution a certain physical
quantity y(t), we typically know its value y0 at a given moment in time t0, and we understand
the physical law underlying its evolution, expressed by a differential equation for y(t). Assuming
such knowledge, we would like to determine the future evolution of y(t) completely, namely all
the values y(t) for all t > t0. A problem of such nature is known as initial value problem.

Definition 1.1.17 (Initial value problem). An initial value problem (IVP in abridged
form) is a pair ®

F (x, y(x), . . . , y(n)(x)) = 0

y(x0) = y0 , y
′(x0) = y1 , . . . , y

(n−1)(x0) = yn−1

(1.1.9)

consisting of an ordinary differential equation

F (x, y(x), . . . , y(n)(x)) = 0 (1.1.10)

and a set of initial conditions

y(x0) = y0 , y
′(x0) = y1 , . . . , y

(n−1)(x0) = yn−1

where x0, y0, . . . , yn−1 are real numbers.
A solution of the IVP (1.1.9) is a solution u(x) of the ODE (1.1.10) which is defined on

an interval I containing the point x0, and which satisfies the conditions

u(x0) = y0 , u
′(x0) = y1 , . . . , u

(n−1)(x0) = yn−1 .

Example 1.1.18. Let us find a solution to the IVP®
y′(x) = y2(x)

y(1) = 1

taking advantage of the family of solutions found in Example 1.1.10. From the latter, we know
that each function

u(x) =
1

C − x
,

for C ∈ R, is a solution to the ODE in the given initial value problem. We now impose the
initial condition u(1) = 1 prescribed by the IVP, and obtain the algebraic equation

1 = u(1) =
1

C − 1
,

from which we readily get C = 2. Therefore, the function

u(x) =
1

2− x

is a solution to the given IVP.
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It is now natural to ask: are there any more solutions? Certainly none of the form 1/(C−x)
for C ̸= 2, since we obtained C = 2 precisely by dictating the initial condition. In principle,
there might however be other solutions to the ODE y′(x) = y2(x) which are not of the form
u(x) = 1/(C − x). In later sections of this chapter we will prove that there are, as a matter of
fact, no other solutions.

Example 1.1.19. Leveraging the family of solutions found in Example 1.1.12, let us find a
solution to the IVP ®

y′′(x) + 2y′(x) + y(x) = 0

y(0) = 0 , y′(0) = −1
.

A general solution to the given DE is, as we already verified,

u(x) = C1e
−x + C2xe

−x (1.1.11)

for real parameters C1, C2. We now impose the two initial conditions:

0 = u(0) = C1 · 1 + C2 · 0 = C1 ,

so that we find C1 = 0 and u(x) = C2xe
−x for some C2 ∈ R, which we determine imposing the

second initial condition. We compute u′(x) = C2(e
−x − xe−x), and thus

−1 = u′(0) = C2(1− 0) = C2 .

Therefore, the unique function u(x) in the family (1.1.11) which solves the original IVP is

u(x) = −xe−x .

A major achievement of the general mathematical theory of ordinary differential equations
is that, under rather mild assumptions, initial value problems always admit a unique solution
defined for all values of the independent variable x which are sufficiently close to the initial
value x0. Thus, while a n-th order ODE usually admits an n-parameter family of solutions, the
additional datum of n initial conditions in an IVP forces uniqueness. In this course, we shall
not be concerned with the abstract theory of ODEs, and will rather verify the aforementioned
uniqueness principle in a wide variety of specific examples.

1.1.6. Ordinary differential equations in normal form. Throughout this course, we
shall exclusively deal with ordinary differential equations expressed in normal form, namely
those expressing the highest-order derivative of the unknown function as a function of all the
remaining derivatives: more precisely, an n-th order ODE in normal form appears as

y(n)(x) = F (x, y(x), . . . , y(n−1)(x))

for a certain continuous real-valued function F of n+ 1 real variables.

Example 1.1.20. The first-order ODE

y′(x) = 2x log y(x)

is in normal form, whereas the first-order ODE

y′2(x) + y2(x) = x4

is not in normal form. Notice that trying to solve the latter for the highest-order derivative
y′(x) would produce the ambiguity

y′(x) = ±
»

x4 − y2(x)

in the choice of square root.
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Example 1.1.21. The second-order ODE

t3x′′(t)− t2x(t) = t− sin t

is not in normal form, while the second-order ODE

x′′(t) = −tx′(t)− x(t) + 1

is in normal form.

For the sake of brevity, we adopt the following terminological convention.

Convention. From now on, unless explicitly mentioned, a differential equation without
further specification is meant to be an ordinary differential equation, and will routinely be
abbreviated as DE.

1.2. Integrals as general and particular solutions

We now begin a systematic study of first-order differential equations in autonomous form,
that is, equations of the form

y′(x) = f(x, y(x))

in the unknown y(x), where f is a (given) function of two real-variables. This section is devoted
to the analysis of the most elementary instances of such equations, namely the case where the
function f only depends on the independent variable x. The resulting form of the equation is
thus

y′(x) = f(x) . (1.2.1)

Direct integration yields all solutions to the last-displayed equation. Indeed, here we have a
fixed, known continuous function f(x), and we look for all continuously differentiable functions
y(x) whose derivative is given by the function f . According to the terminology introduced in
Calculus 2, y(x) solves the DE in (1.2.1) if and only if y(x) is an anti-derivative of the function
f(x). Anti-derivatives are given by indefinite integrals, whence y(x) is a solution if and only if

y(x) =

∫
f(x) dx = g(x) + C (1.2.2)

where g(x) is a choice of an anti-derivative of f(x), and C is a real constant. What we just
described in (1.2.2) is routinely referred to as a general solution of the DE in (1.2.1), namely
a collection of solutions parametrized, in this case, by the constant C. For each fixed C ∈ R,
we obtain a particular solution of the equation in (1.2.1); thus a general solution is a family
of particular solutions. In this case, we are dealing with a one-parameter family of solutions,
as shall customarily be the case for first-order differential equations.

If a general solution to a given equation comprises all possible solutions, then we shall speak
of the general solution of the equation. In the present case, (1.2.2) provides the general
solution to (1.2.1); indeed, if g(x) is a fixed anti-derivative of f(x) and u(x) is any solution
to (1.2.1), namely satisfies u′(x) = f(x), then a well known theorem of calculus tells us that u
and g must differ by a constant, for they have the same derivative. Hence, u(x) = g(x) +C for
some C ∈ R and thus u belongs to the family of functions described in (1.2.2).

Recall that an anti-derivative g(x) of f(x) is given by any definite integral of the form

g(x) =

∫ x

x0

f(t) dt

where x0 is a real number; this is indeed the content of the fundamental theorem of calculus.
Initial conditions enable to specialize a general solution to a particular solution. Suppose

given an IVP ®
y′(x) = f(x)

y(x0) = y0
(1.2.3)
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where the differential equation is of the kind we are studying in this section. We known from
the discussion above that a solution to the DE in (1.2.3) must take the form

y(x) = g(x) + C

where g is a fixed anti-derivative of f and C is a real number. Imposing the initial condition
y(x0) = y0 yields

y0 = y(x0) = g(x0) + C ,

from which we derive
C = y0 − g(x0) .

Therefore, we have shown that the IVP in (1.2.3) admits a unique solution, which is given by

y(x) = g(x) + y0 − g(x0)

for any fixed anti-derivative g(x) of f(x). If, for instance, we choose g(x) to be the definite
integral

g(x) =

∫ x

x0

f(t) dt ,

then g(x0) = 0 and thus the unique solution can be expressed as

y(x) = y0 +

∫ x

x0

f(t) dt .

We summarize the results obtained so far in this section in the following theorem.

Theorem 1.2.1. Let f(x) be a continuous function defined on an open interval I = (a, b) ⊂
R, and consider the first-order differential equation

y′(x) = f(x) .

Let g(x) be an anti-derivative of f(x) on I. Then, a continuously differentiable function u(x),
defined on I, is a solution of the given differential equation if and only if

u(x) = g(x) + C

for some C ∈ R.
Furthermore, if x0 ∈ I and y0 ∈ R, the initial value problem®

y′(x) = f(x)

y(x0) = y0

admits a unique solution u(x) defined on I, which is given by

u(x) = y0 +

∫ x

x0

f(t) dt .

We now familiarize ourselves with the method by working out a few examples.

Example 1.2.2. Consider the IVP®
y′(x) = x+ 4

y(1) = 3
.

We first find the general solution to
y′(x) = x+ 4

by means of indefinite integrals:

y(x) =

∫
x+ 4 dx =

x2

2
+ 4x+ C , C ∈ R.

Now, we impose the condition y(1) = 3 to find the appropriate value of C; we have

3 = y(1) =
1

2
+ 4 + C ,
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from which

C = 3− 1

2
− 4 = −3

2
.

We conclude that the unique solution to the given IVP is the function

y(x) =
x2

2
+ 4x− 3

2
.

Example 1.2.3. Consider the IVP®
y′(x) = 1√

x+1

y(0) = 2
.

The function f(x) = 1√
x+1

is defined over the open interval {x : x + 1 > 0} = (−1,+∞). The

general solution to

y′(x) =
1√
x+ 1

is given by

y(x) =

∫
1√
x+ 1

dx = 2
√
x+ 1 + C , C ∈ R.

Plugging the initial condition y(0) = 2 yields

2 = y(0) = 2 + C ,

which gives C = 0. Thus the unique solution to the given IVP is the function

y(x) = 2
√
x+ 1 .
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CHAPTER 3

3.1. Mechanical vibrations

3.1.1. Free undamped motion. We start by examining the case where there is no dash-
pot nor any other form of resistance, so the only force applied to the mass is exerted by the
spring. The differential equation describing the mass’s displacement from the equilibrium po-
sition is thus

mx′′(t) + kx(t) = 0 (3.1.1)

where k is the spring constant. It shall be beneficial to rewrite the equation as

x′′(t) + ω2
0x(t) = 0

where the quantity

ω0 =

…
k

m
will play, as we shall shortly see, a crucial role in the understanding of the motion.

The characteristic equation of the second-order linear homogeneous differential equation (3.1.1)
is

r2 + ω2
0 = 0 ,

admitting a pair of complex-conjugate solutions

r1 = iω0 , r2 = −iω0 .

The general solution is thus given by

x(t) = A cos(ω0t) +B sin(ω0t) , A,B ∈ R.

It is possible to recast the solution using only one trigonometric function, instead of two. To
this effect, we introduce two new real parameters C, α, subject to the relations

C =
√
A2 +B2 , cosα =

A

C
, sinα =

B

C
, α ∈ [0, 2π) .

Using the new parameters, we may rewrite the general solution, at least when A and B are not
both 01, as

x(t) = C

Å
A

C
cos(ω0t) +

B

C
sin(ω0t)

ã
= C(cosα cos(ω0t) + sinα sin(ω0t)) .

Recalling now the addition formula for the cosine,

cos(β + γ) = cos β cos γ − sin β sin γ ,

we can write from above

x(t) = C cos(ω0t− α) .

Remark 3.1.1. Observe that, although to derive this alternative expression we had to
assume (A,B) ̸= (0, 0), we actually recover this trivial case by letting C = 0 in the last
displayed expression for x(t). Thus, the latter describes fully the general solution to (3.1.1).

1This corresponds to the uninteresting case where the initial position of the mass is the equilibrium position,
and the initial velocity vanishes, so that the mass stays put forever.

19
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Suppose the mass has initial position and velocity

x(0) = x0 , v(0) = v0 ;

then we get

x0 = C cos(ω0 · 0− α) = C cos(−α) = C cosα ,

and computing

x′(t) = −ω0C sin(ω0t− α) ,

we get also the condition

v0 = −ω0C sin(ω0 · 0− α) = −ω0C sin(−α) = ω0C sinα .

The conditions ®
C cosα = x0

C sinα = v0
ω0

are met for

C =

 
x2
0 +

v20
ω2
0

3.1.2. Free damped motion.

mx′′(t) + cx′(t) + kx(t) = 0 , (3.1.2)

which is convenient to rewrite as

x′′(t) + 2px′(t) + ω2
0x(t) = 0

with

ω0 =

…
k

m

being the associated undamped circular frequency and

p =
c

2m
> 0 .

The characteristic equation of the second-order linear homogeneous differential equation (3.1.2)
is

r2 + 2pr + ω2
0 = 0 ,

which has roots

r1,2 = −p±
»

p2 − ω2
0 . (3.1.3)

The analysis of solutions to (3.1.2) depends thus on whether we are in the regime

p2 > ω2
0 , p2 = ω2

0 , or p2 < ω2
0 .

The quantity under the square-root sign in (3.1.3) is, explicitly,

p2 − ω2
0 =

c2

4m2
− k

m
=

c2 − 4km

4m2
; (3.1.4)

the critical damping is defined as

ccr =
√
4km ,

whence the three regimes mentioned above correspond to the cases

c > ccr , c = ccr , c < ccr .
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Overdamped case: c > ccr. This is the regime where the resistance (represented by
c) is strong compared to the force the spring is capable of exerting (represented by k). The
characteristic equation of (3.1.2) has two distinct real roots

r1 = −p+
»

p2 − ω2
0 , r2 = −p−

»
p2 − ω2

0 ,

both of which are strictly negative (since
√

p2 − ω2
0 < p), and therefore admits as general

solution

x(t) = c1e
r1t + c2e

r2t , c1, c2 ∈ R.
We deduce that, regardless of the initial position and velocity of the object, or equivalently,
regardless of the constants c1 and c2,

lim
t→∞

x(t) = 0 .

Thus, the position of the object will converge exponentially fast to its equilibrium x = 0: the
would-be oscillations caused by the spring are completely damped out.

Critically damped case: c = ccr. We might think of this situation as the case where
the resistance and the force imparted by the spring are fully balanced out. In this case, the
characteristic equation of (3.1.2) has one multiple real root

r = −p ;

this yields the general solution

x(t) = c1e
−pt + c2te

−pt = e−pt(c1 + c2t) , c1, c2 ∈ R.
Observe that, here, the equation

x(t) = 0

admits, if c2 ̸= 0, exactly one solution in t, namely

t = −c1
c2

;

hence, if c1/c2 < 0, the object will pass exactly once through its equilibrium position, at time
− c1

c2
> 0, and subsequently converge exponentially fast to it.

Underdamped case: c < ccr. This last scenario corresponds to the case where the resis-
tance is not enough to dampen the force exerted by the spring. The characteristic equation
of (3.1.2) has two complex-conjugate roots

r1 = −p+ i
»

ω2
0 − p2 ; r2 = −p− i

»
ω2
0 − p2 ,

and thus admits as general solution

x(t) = e−pt(A cos(ω1t) +B sin(ω1t))

where we set

ω1 =
»

ω2
0 − p2 =

1

2m

√
4km− c2 ,

the last equality following from (3.1.4).
Introducing now two new parameters C, α via

C =
√
A2 +B2 , cosα =

A

C
, sinα =

B

C
,

and using the addition formula for the cosine, as we did in §3.1.1, we can rewrite the general
solution as

x(t) = Ce−pt cos(ω1t− α) .

We call

ω1
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the pseudofrequency,

T1 =
2π

ω1

the pseudoperiod and
Ce−pt

the time-varying amplitude of the oscillation.

3.2. Nonhomogeneous equations and undetermined coefficients

The general form of a non-homogeneous linear ODE of order n, in the unknown y = y(x),
is

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = f(x) , (3.2.1)

where f is a continuous function of a real variable x, referred to as the non-homogeneous term
of the equation, and a0, a1, . . . , an are given real numbers with an ̸= 0.

Theorem 3.2.1. Consider a differential equation as in (3.2.1), and let yp(x) be a particular
solution. Let also

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = 0 (3.2.2)

be the associated homogeneous differential equation.

(1) If yh(x) is a solution of (3.2.2), then

y(x) = yh(x) + yp(x)

is a solution of (3.2.1).
(2) Conversely, if y(x) is a solution of (3.2.1), then there exists a solution yh(x) of (3.2.2)

such that
y(x) = yh(x) + yp(x) .

Method of undetermined coefficients. Suppose we want to find a particular solution
to

y′′(x) + ay′(x) + by(x) = A cos kx+B sin kx , (3.2.3)

where a, b, A,B, k are given real numbers with k ̸= 0. We may assume that b ̸= 0, otherwise
the equation boils down to a first-order equation in the new unknown function u(x) = y′(x).

We look for a particular solution of the form

yp(x) = α cos kx+ β sin kx , (3.2.4)

for some real coefficients α, β to be determined. We compute

y′(x) = k(−α sin kx+ β cos kx)

and
y′′(x) = −k2(α cos kx+ β sin kx) = −k2y(x) .

Therefore, for the homogeneous term we have

y′′(x)+ay′(x)+by(x) = (b−k2)y(x)+ay′(x) =
(
(b−k2)α+akβ

)
cos kx+

(
(b−k2)β−akα

)
sin kx .

In order for (3.2.4) to be a particular solution of (3.2.3), we must therefore have(
(b− k2)α + akβ

)
cos kx+

(
(b− k2)β − akα

)
sin kx = A cos kx+B sin kx . (3.2.5)

Since cos kx and sin kx are linearly independent functions, we must have®
(b− k2)α + akβ = A

(b− k2)β − akα = B
. (3.2.6)

It is a classical result from elementary linear algebra that the previous linear system admits
a unique solution in the unknowns α and β if and only if the determinant of the matrixÅ

b− k2 ak
−ak b− k2

ã
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is non-zero. Such determinant equals

(b− k2)2 + (ak)2 ,

which is a strictly positive real number unless

a = 0 and b = k2

(recall we operate under the assumption k ̸= 0).
Therefore, if either a ̸= 0 or b ̸= k2, then there is a unique pair (α, β) of real numbers such

that the function

yp(x) = α cos kx+ β sin kx

is a particular solution to (3.2.3).
Suppose now we are in the pathological case where both a = 0 and b = k2, so that (3.2.3)

takes the form

y′′ + k2y = A cos kx+B sin kx . (3.2.7)

It is clear in this case why no function of the form

yp(x) = α cos kx+ β sin kx (3.2.8)

can be a solution (unless A = B = 0, and then we are in the homogeneous situation which we
already understand fully); indeed, the associated homogeneous equation is

y′′ + k2y = 0 , (3.2.9)

and since the roots of the corresponding characteristic equation are ±ik, the general solution
of (3.2.9) is precisely given by (3.2.8), which can thus not be a solution to the non-homogeneous
equation. We thus attempt to find a particular solution to (3.2.7) by slightly tweaking (3.2.8),
and looking for solutions of the form

yp(x) = x(α cos kx+ β sin kx) .

We compute

y′p(x) = α cos kx+ β sin kx+ kx(−α sin kx+ β cos kx)

and

y′′p(x) = 2k(−α sin kx+ β cos kx)− k2x(α cos kx+ β sin kx)

= 2k(−α sin kx+ β cos kx)− k2yp(x) .

Therefore,

y′′p(x) + k2yp(x) = 2k(−α sin kx+ β cos kx) = 2kβ cos kx− 2kα sin kx ,

and we want the latter expression to equal

A cos kx+B sin kx

in order for yp to be a solution to the non-homogeneous equation (3.2.7). Since k ̸= 0, cos kx
and sin kx are linearly independent functions, and thus the only way the desired equality can
hold is to have ®

2kβ = A

−2kα = B
.

We deduce thus that the function

yp(x) = x

Å
−B

2k
cos kx+

A

2k
sin kx

ã
is a particular solution of (3.2.7).
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Example 3.2.2. Let’s solve the initial value problem

y′′ + 4y′ − 12y = 5 cos 3x , y(0) = − 7

39
, y′(0) =

17

13

The general solution to the nonhomogeneous equation

y′′ + 4y′ − 12y = 5 cos 3x

is of the form
y(x) = yp(x) + yh(x)

where yp(x) is a particular solution of the equation and yh(x) is the general solution of the
associated homogeneous equation

y′′ + 4y′ − 12y = 0 .

The characteristic equation of the latter is

r2 + 4r − 12 = (r + 6)(r − 2) = 0 ,

whence the general solution takes the form

yh(x) = Ae−6x +Be2x , A,B ∈ R.
We now want to find a particular solution yp of the non-homogeneous equation. Since the
coefficient of the term y′ appearing in the equation is 4 ̸= 0, we may look for a particular
solution of the form

yp(x) = α cos 3x+ β sin 3x

for real parameters α and β to be determined. We compute

y′p(x) = −3α sin 3x+ 3β cos 3x ,

y′′p(x) = −9(α cos 3x+ β sin 3x) ,

and
y′′p(x) + 4y′p(x)− 12yp(x) = (−21α + 12β) cos 3x− (12α + 21β) sin 3x .

In order to find α and β, we must therefore solve the linear system®
−21α + 12β = 5

12α + 21β = 0
.

From the second equation we derive

β = −4

7
α ,

and plugging this into the first equation we deduce

−21α + 12

Å
−4

7
α

ã
= 5 ,

that is,

α = − 7

39
, β =

4

39
.

All in all, we have found that the general solution to the given non-homogeneous equation is

y(x) =
1

39
(−7 cos 3x+ 4 sin 3x) + Ae−6x +Be2x , A,B ∈ R.

To determine A and B, all is left to do is to impose the given initial conditions. We have

− 7

39
= y(0) = − 7

39
+ A+B , that is, A+B = 0 ;

for the derivative, we have

y′(x) =
1

13
(7 sin 3x+ 4 cos 3x)− 6Ae−6x + 2Be2x ,
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thus we want
17

13
= y′(0) =

4

13
− 6A+ 2B , that is, − 6A+ 2B = 1 .

We thus need to solve the linear system®
A+B = 0

−6A+ 2B = 1
,

which is easily seen to admit the unique solution

A = −1

8
, B =

1

8
.

Hence, the unique solution to the given IVP is

y(x) =
1

39
(−7 cos 3x+ 4 sin 3x) +

1

8
(e2x − e−6x) .

3.3. Endpoint problems and eigenvalues

Much of the discussion in the present chapter relies fundamentally on the existence and
uniqueness of solutions for initial value problems associated with linear second order differential
equations (Theorem ??), namely the fact that an IVP of the form

y′′(x) + p(x)y′(x) + q(x)y(x) = 0 , y(0) = a , y′(0) = b

admits, generically (that is, under extremely mild regularity assumptions on the functions p
and q), a unique solution. The conclusive section of this chapter introduces a different sort of
problems, for which existence and uniqueness of solutions may instead fail dramatically. These
are called endpoint problems or boundary value problems, and in the context of linear
second-order differential equations take the form

y′′(x) + p(x)y′(x) + q(x)y(x) = 0 , y(a) = 0 , y(b) = 0 ,

where p(x) and q(x) are continuous functions of one real variable, a < b are real numbers, and
we look for solutions y(x) which are continuous functions y(x) defined on the closed interval
[a, b], twice continuously differentiable on the open interval (a, b), therein satisfying the given
differential equation, and finally satisfying the prescribed boundary conditions y(a) = y(b) = 0.

A boundary value problem of the form

y′′(x) + p(x)y′(x) + λq(x)y(x) = 0 , y(a) = 0 , y(b) = 0 , (3.3.1)

where λ is an unspecified real parameter, is called an eigenvalue problem. The question we
would like to answer regarding this kind of problems is the following: for which values of λ does
the boundary value problem admit a non-trivial solution, namely a solution y(x) which is not
constantly equal to zero2? If such a nonzero solution exists, we say that λ is an eigenvalue of
the problem.

If λ∗ is an eigenvalue of the problem (3.3.1) and y∗ is a corresponding nonzero solution to
the problem, namely the conditions

y′′∗ + p(x)y′∗ + λ∗q(x)y∗ = 0 , y∗(a) = 0 , y∗(b) = 0

are fulfilled, we call y∗ an eigenfunction associated to the eigenvalue λ∗.
Observe that the problem (3.3.1) is homogeneous, namely whenever y∗ is an eigenfunction

associated to a certain eigenvalue λ∗, then any constant multiple cy∗, 0 ̸= c ∈ R, is also an
eigenfunction associated to the same eigenvalue.

2Observe that the constant function y = 0 satisfies trivially the conditions dictated by the eigenvalue
problem
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Remark 3.3.1. Under mild regularity assumptions on the functions p(x) and q(x), it can
be proven that, conversely, any two eigenfunctions associated to the same eigenvalue λ∗ for the
problem (3.3.1) must be linearly dependent. However, we won’t need such an abstract result
in the sequel, it will emerge on a case-by-case basis through computations.

We shall now see how to find eigenvalues and eigenfunctions for eingevalue problems in
concrete examples.

Example 3.3.2. Let’s determine eigenvalues and associated eigenfunctions for the boundary
value problem

y′′ + λy = 0 , y(0) = 0 , y(L) = 0

where L > 0 is a fixed real number.
We start by determining the general solution to the given ODE. The characteristic equation

is
r2 + λ = 0 ,

whence we need to examine three distinct cases separately, according to whether λ > 0, λ = 0
or λ < 0.

Suppose first λ > 0. Then the characteristic equations has two complex conjugate roots

r1,2 = ±i
√
λ ,

whence the general solution to the ODE is given by

y(x) = A cos(
√
λx) +B sin(

√
λx) , A,B ∈ R.

We now need to impose the boundary conditions: we have

0 = y(0) = A

and
0 = y(L) = A cos(

√
λL) +B sin(

√
λL) .

If sin(
√
λL) ̸= 0, that is, if

λ ̸= k2 π2

L2
for all integer k ,

then the only possibility is to have
A = B = 0 ,

so that the unique solution to the boundary value problem for such a λ is the zero function. In
this case, therefore, λ is not an eigenvalue of the problem. If, instead,

λ = k2 π2

L2

for some integer k ̸= 0 (recall that we are in the case λ > 0), then sin(
√
λL) = 0, and from the

above we see that any function

y(x) = B sin(
√
λx) , B ̸= 0

is a nonzero solution to the eigenvalue problem for such a value of λ. We conclude that
λ∗ = k2 π2

L2 is an eigenvalue for our problem, for any integer k ̸= 0, and y∗(x) = B sin(
√
λ∗x) is

an associated eigenfunction for any B ̸= 0.
We proceed with the case λ = 0. The general solution to the differential equation is then

y(x) = Ax+B , A,B ∈ R,
and it is clear that the conditions y(0) = 0 = y(L) can only be both met if A = B = 0. Thus
the unique solution to the boundary value problem corresponding to λ = 0 is the zero solution,
which tells us that 0 is not an eigenvalue for the problem.

Finally, we examine the case λ < 0. In this case the characteristic equation associated to
the differential equation has two distinct real roots,

r1,2 = ±
√
−λ ,
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whence the general solution of the ODE takes the form

y(x) = Ae
√
−λx +Be−

√
−λx , A,B ∈ R.

In order for the boundary conditions y(0) = 0 = y(L) to be fulfilled, the parameters A and B
must solve the linear system ®

A+B = 0

e
√
−λLA+ e−

√
−λLB = 0

. (3.3.2)

The determinant of the 2× 2 matrix Å
1 1

e
√
−λL e−

√
−λL

ã
is

e−
√
−λL − e

√
−λL ,

which vanishes if and only if

e
√
−λL = e−

√
−λL ,

that is, if and only if √
−λL = 0 .

Since L > 0 by assumption, the only possibility would be λ = 0, which is however excluded
since we are dealing with the case λ < 0.

It follows that the determinant is always nonvanishing, which implies by elementary linear
algebra that the linear system (4.1.2) admits only the trivial solution A = B = 0. Thus, the
only function solving the boundary value problem is the function y = 0, which again tells us
that no λ < 0 can be an eigenvalue for our given problem.

Observe that the previous example illustrates already the difference between boundary value
problems and initial value problems in terms of uniqueness of solutions. When

λ = k2 π
2

L2

for some integer k ̸= 0, then the boundary value problem

y′′ + λy = 0 , y(0) = 0 , y(L) = 0 (L > 0)

admits infinitely many solutions, namely all functions of the form

y(x) = B sin (
√
λx) , B ∈ R.

Boundary value problems may also involve conditions on the first derivative, potentially
mixed with conditions on the unknown function itself. For instance, they may take the form

y′′(x) + p(x)y′(x) + q(x)y(x) = 0 , y′(a) = 0 , y′(b) = 0

or
y′′(x) + p(x)y′(x) + q(x)y(x) = 0 , y(a) = 0 , y′(b) = 0 .

Let’s investigate eigenvalue problems of this sort.

Example 3.3.3. We treat the eigenvalue problem

y′′ + λy = 0 , y(0) = 0 , y′(L) = 0

for some fixed L > 0. The differential equation is the same as in Example 3.3.2, and we similarly
distinguish the three cases λ > 0, λ = 0 and λ < 0.

When λ > 0, the general solution to the differential equation is

y(x) = A cos(
√
λx) +B sin(

√
λx) , A,B ∈ R.

The derivative is
y′(x) =

√
λ(−A sin(

√
λx) +B cos(

√
λx)) ,
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whence imposing the boundary conditions y(0) = 0 = y′(L) amounts to having

A = 0 ,
√
λB cos(

√
λL) = 0 .

As λ > 0, the last displayed condition yields

B cos(
√
λL) = 0 . (3.3.3)

Now cos(
√
λL) = 0 holds if and only if

λ =
π2

4L2
(1 + 2k)2

for some integer k. We infer that the value

λ∗ =
π2

4L2
(1 + 2k)2

is an eigenvalue of our problem for every integer k, with associated family of eigenfunctions

y∗(x) = B sin(
√
λ∗x) , B ̸= 0.

On the other hand, if λ > 0 is different from π2

4L2 (1 + 2k)2 for all integers k, then the only
way (3.3.3) can hold is for B = 0, which leads to y = 0 as the only solution to the corresponding
boundary value problem. Such values of λ aren’t thus eigenvalues for the problem.

When λ = 0, the general solution to the differential equation is

y(x) = Ax+B , A,B ∈ R,
with derivative

y′(x) = A .

The boundary conditions thus deliver

0 = y(0) = B , 0 = y′(L) = A ,

from which we deduce that 0 is not an eigenvalue for our problem.
Finally, when λ < 0, the general solution to the differential equation is given by

y(x) = Ae
√
−λx +Be−

√
−λx , A,B ∈ R,

with derivative
y′(x) =

√
−λAe

√
−λx −

√
−λBe−

√
−λx .

The boundary conditions y(0) = 0 = y′(L) result thus in the linear system®
A+B = 0√
−λe

√
−λLA−

√
−λe−

√
−λLB = 0

.

The determinant of the matrix Å
1 1√

−λe
√
−λL −

√
−λe−

√
−λL

ã
vanishes if and only if

−
√
−λe

√
−λ =

√
−λe−

√
−λ ,

which is impossible since λ ̸= 0. Thus no λ < 0 can be an eigenvalue of our problem.



CHAPTER 4

Linear systems of differential equations

The purpose of this chapter is to introduce the study of systems of differential equations.
Just like, in elementary algebra, we pass from the study of a single algebraic equation to the
study of systems of such equations, such as the linear system®

3X1 + 4X2 = 1

−2X1 + 5X2 = 0

in the two variables X1, X2, so too in the context of differential equations we might be inter-
ested, for the purpose of understanding real-world phenomena, in studying systems of differ-
ential equations, namely finite collections of differential equations in several different unknown
functions, such as the linear system®

x′
1(t) = 2x2(t)

x′
2(t) = −3x1(t) + et

.

As we shall see in the first section if this chapter, a linear system of n first-order differential
equations in n unknown functions x1(t), . . . , xn(t) takes the form

x′
1(t) = p11(t)x1(t) + p12(t)x2(t) + · · ·+ p1n(t)xn(t) + f1(t)

x′
2(t) = p21(t)x1(t) + p22(t)x2(t) + · · ·+ p2n(t)xn(t) + f2(t)

· · ·
x′
n(t) = pn1(t)x1(t) + pn2(t)x2(t) + · · ·+ pnn(t)xn(t) + fn(t)

where p11(t), . . . , p1n(t), . . . , pn1(t), . . . , pnn(t) and f1(t), . . . , fn(t) are given real-valued functions
of a single real variable t. It is already apparent how cumbersome the previous notation for a
general linear system of n differential equations can be. However, linear algebra comes to the
rescue and allows to simplify notation considerably, allowing for instance to express the last
displayed linear system in a much more concise form as

x′(t) = P (t)x(t) + f(t) ,

as if it was a single linear first-order differential equation, where now x(t) and f(t) are column
vector-valued functions and P (t) is a matrix-valued function. We will thus begin the chapter
with a self-contained review of matrix terminology and notation.

4.1. Matrices and linear systems

Given two integers m,n ≥ 1, an m× n matrix is a rectangular array consisting of mn real
numbers, also known es elements or entries of the matrix, arranged in m (horizontal) rows
and n (vertical) columns:

A =

â
a11 a12 a13 · · · · · · a1n
a21 a22 a23 · · · · · · a2n
a31 a32 a33 · · · · · · a3n
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
am1 am2 am3 · · · · · · amn

ì
.

We will routinely denote a matrix A as above, in abbreviated form, as A = [aij], where aij
is the element in the i-th row and j-th column.

29
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If m = n, we say that an n× n matrix A is a square matrix of order n.
By definition, two matrices A = [aij], B = [bij] are equal if they have the same number m

of rows and the same number n of columns, and if aij = bij for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

4.1.1. Addition and scalar multiplication. We introduce two operations on the set of
m× n matrices. First, given two m× n matrices A = [aij], B = [bij], we define the sum of A
and B as the m× n matrix

A+B = [aij + bij] ;

in other words, the element in row i and column j of the sum A+B is the sum aij + bij of the
corresponding elements in A and B, respectively.

Secondly, given a real number c, we define the scalar multiplication of an m× n matrix
A = [aij] by the scalar c as the m× n matrix

cA = [caij] ,

obtained by multiplying each element of A by c.
The two operations just defined satisfy the following properties:

• (associativity of the sum) if A,B,C are m× n matrices, then

(A+B) + C = A+ (B + C) ;

• (commutativity of the sum) if A,B are m× n matrices, then

A+B = B + A ;

• (existence of additive identity) the zero m × n matrix 0, namely the m × n matrix
all of whose elements are zero, is the identity for the sum: for any m× n matrix,

0+ A = A+ 0 = A ;

• (existence of additive inverse) for any m×n matrix A = [aij], the matrix −A = [−aij]
is an additive inverse for A, namely

A+ (−A) = −A+ A = 0 ;

• (distributivity of scalar multiplication with respect to the sum) if A,B are m × n
matrices and c, d are real numbers, then

(c+ d)A = cA+ dA and c(A+B) = cA+ cB ;

• (existence of identity for scalar multiplication) for every m× n matrix A,

1A = A ,

where 1A denotes scalar multiplication of A by the real number 1.

The transpose of an m× n matrix A = [aij], which we will indicate with AT , is the n×m
matrix AT = [aji]: more precisely, the element in the j-th row and i-th colum of AT is the
element in the i-th row and j-th column of A.

An m × 1 matrix is called a column vector, whereas an 1 × n matrix is called a row
vector. The transpose of a row vector is a column vector, and conversely.

It is often convenient to describe an m× n matrix A = [aij] as an array of m row vectors

A =

â
a1
a2
·
·
·
am

ì
or as an array of n column vectors

A =
(
b1 b2 · · · bn

)
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where
ai =

(
ai1 ai2 · · · ain

)
for every 1 ≤ i ≤ m and

bj =

â
a1j
a2j
·
·
·

amj

ì
for every 1 ≤ j ≤ n.

4.1.2. Matrix multiplication. Another very important operation we can perform on
matrices is matrix multiplication. We first introduce the multiplication of a row vector by
a column vector. If a = (a1 a2 · · · an) is a 1× n row vector and b = (b1 b2 · · · bn)T is an n× 1
column vector, then the matrix multiplication of a by b, denoted ab, is the real number

ab =
n∑

k=1

akbk = a1b1 + · · ·+ anbn ,

that is, the familiar dot product of the two vectors a and b.
If now A and B are two matrices, where the number of columns of A matches the number of

rows of B1, we define the product AB as follows. If A = [ars] is an m× ℓ matrix and B = [btu]
is an ℓ× n matrix, the product AB = [cij] is the m× n matrix where

cij =
ℓ∑

k=1

aikbkj = ai1b1j + · · ·+ aiℓbℓj

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. In other words, the element cij of the product AB is the
scalar product, or dot product, of the i-th row vector of A with the j-th column vector of B:

cij = ai · bj
where we write

A =

â
a1
a2
·
·
·
am

ì
and

B =
(
b1 b2 · · · bn

)
.

It is straightforward, though tedious, to verify that matrix multiplication is associative:

A(BC) = (AB)C

whenever all products are defined. Furthermore, it distributes with respect to the sum, meaning
that

A(B + C) = AB + AC and (B + C)A = BA+ CA

whenever the products are defined. Also, there is an identity for matrix multiplication on
square matrices: if I denotes the identity matrix of order n, namely the matrix with 1 in the
diagonal entries and 0 in the off-diagonal entries, then

IA = AI = A

for every square matrix A of order n.

1Else, matrix multiplication is not defined.
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Observe, however, that matrix multiplication is not commutative. To begin with, it is
not necessarily true that the product BA is well defined whenever AB is: this only happens
for square matrices. However, even confining ourselves to square matrices of a fixed order,
AB ̸= BA in general.

Example 4.1.1. Consider the 2× 2 matrices

A =

Å
0 0
1 0

ã
, B =

Å
0 1
0 0

ã
;

then

AB =

Å
0 0
0 1

ã
but BA =

Å
1 0
0 0

ã
.

Notice also that, in contrast to what happens for standard multiplication of real numbers,
it may happen for two (say, square) matrices A,B that

AB = 0 with A ̸= 0 and B ̸= 0.

Example 4.1.2. Consider the 2× 2 matrices

A =

Å
0 1
0 0

ã
, B =

Å
1 0
0 0

ã
,

which are both different from the zero 2× 2 matrix 0. However,

AB =

Å
0 0
0 0

ã
= 0 .

4.1.3. Inverse matrices and determinants. We say that a square matrix A, of order
n, admits a multiplicative inverse if there is a square matrix B, of order n, such that

AB = BA = I .

It is straightforward to prove that, if A admits a multiplicative inverse, then such inverse is
unique2; we denote it by A−1.

An important fact from elementary linear algebra is that a square matrix A is invertible,
namely admits a multiplicative inverse, if and only if its determinant detA, also denoted |A|
in the sequel, doesn’t vanish. Recall that the determinant of a square matrix can be defined,
inductively on the order n of the matrix, as follows. For 2× 2 matrices, the determinant is the
difference between the product of the diagonal elements and the product of the anti-diagonal
elements: if

A =

Å
a b
c d

ã
,

then

|A| =
∣∣∣∣a b
c d

∣∣∣∣ = ad− bc .

2Here is the easy argument: if B and B′ multiplicative inverses for A, then we may write the following
chain of equalities:

B = IB = (B′A)B = B′(AB) = B′I = B′ ,

where we have used, in successive order:

• the fact that I is a multiplicative identity;
• the fact that B′ is a multiplicative inverse for A;
• associativity of matrix multiplication;
• the fact that B is a multiplicative inverse for A;
• the fact that I is a multiplicative identity.
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Assume now we know how to compute determinants of square matrices of order n−1; then the
expansion of the determinant of a square matrix A = [aij] of order n along the i-th row, where
i is some fixed integer between 1 and n, is

|A| =
n∑

j=1

(−1)i+jaij|Aij| ,

where |Aij| is the determinant of the square matrix Aij of order n− 1 obtained by deleting the
i-th row and the j-th column from the matrix A. Similarly, the expansion of the determinant
of A along the j-th column, where i is some fixed integer between 1 and n, is

|A| =
n∑

i=1

(−1)i+jaij|Aij| .

It is known from linear algebra that all such sums yield the same value, for all 1 ≤ i ≤ n and
all 1 ≤ j ≤ n, which is by definition the determinant of the square matrix A.

Example 4.1.3. Consider the 3× 3 matrix

A =

Ñ
2 1 0
−1 −1 4
1 0 1

é
.

We compute its determinant using expansion along the first column. We have

|A| = 2

∣∣∣∣−1 4
0 1

∣∣∣∣− (−1)

∣∣∣∣1 0
0 1

∣∣∣∣+ ∣∣∣∣ 1 0
−1 4

∣∣∣∣ = 2(−1) + 1 + 4 = 3 .

Alternatively, we may compute it, say, using expansion along the first row:

|A| = 2

∣∣∣∣−1 4
0 1

∣∣∣∣− ∣∣∣∣−1 4
1 1

∣∣∣∣+ 0

∣∣∣∣−1 −1
1 0

∣∣∣∣ = 2(−1)− (−1− 4) + 0 = 3 .

4.1.4. Matrix-valued functions. By a matrix-valued function we mean a function
defined on some open interval I ⊂ R taking values in the set of m×n matrices, where m,n ≥ 1
are fixed integers. Indicating with t the independent real variable, ranging over the interval I,
we typically write a matrix-valued function as

A(t) =

â
a11(t) a12(t) a13(t) · · · · · · a1n(t)
a21(t) a22(t) a23(t) · · · · · · a2n(t)
a31(t) a32(t) a33(t) · · · · · · a3n(t)
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

am1(t) am2(t) am3(t) · · · · · · amn(t)

ì
or, in shorthand form, A(t) = [aij(t)], where aij(t) is a real-valued function defined on the open
interval I, for all 1 ≤ i ≤ m and all 1 ≤ j ≤ n.

We say that a matrix-valued function A(t) = [aij(t)] is continuous (respectively, differ-
entiable) if all functions aij(t) are continuous (respectively, differentiable). If A(t) is differen-
tiable, its derivative is the matrix-valued function

A′(t) = [a′ij(t)] ,

namely the matrix of derivatives of the elements of A(t).

Example 4.1.4. If

A(t) =

Å
1 0 cos t

sin t e−t 1 + t2

ã
,

then A(t) is differentiable with derivative

A′(t) =

Å
0 0 − sin t

cos t −e−t 2t

ã
.
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Here is how differentiation of matrix-valued functions behaves with respect to the standard
matrix operations:

• if A(t) and B(t) are differentiable matrix-valued functions, then A(t) + B(t) is a dif-
ferentiable matrix-valued function and

d

dt

(
A(t) +B(t)

)
=

d

dt
A(t) +

d

dt
B(t) ;

• if A(t) is a differentiable matrix-valued function and c(t) is a differentiable real-valued
function, then the scalar multiplication c(t)A(t) is a differentiable matrix-valued func-
tion and

d

dt

(
c(t)A(t)

)
=

Å
d

dt
c(t)

ã
A(t) + c(t)

Å
d

dt
A(t)

ã
;

• if A(t) is a differentiable matrix-valued function with values in the set ofm×ℓmatrices,
and B(t) is a differentiable matrix-valued function with values in the set of ℓ × n
matrices, then the matrix productA(t)B(t) is (well defined and) a differentiable matrix-
valued function with values in the set of m× n matrices, and

d

dt

(
A(t)B(t)

)
=

Å
d

dt
A(t)

ã
B(t) + A(t)

Å
d

dt
B(t)

ã
. (4.1.1)

Remark 4.1.5. Beware the order in which we multiply matrices in (4.1.1): it is not correct
to invert the order of multiplication and write

d

dt

(
A(t)B(t)

)
= B(t)

Å
d

dt
A(t)

ã
+

Å
d

dt
B(t)

ã
A(t) ,

since matrix multiplication is not commutative. As a matter of fact, the products

B(t)

Å
d

dt
A(t)

ã
and

Å
d

dt
B(t)

ã
A(t)

might not even be well defined.

4.1.5. First-order linear systems. Having introduced matrix-valued functions and re-
lated notation, we may now write a general linear system of n first-order differential
equations in n unknown functions x1(t), . . . , xn(t),

x′
1(t) = p11(t)x1(t) + p12(t)x2(t) + · · ·+ p1n(t)xn(t) + f1(t)

x′
2(t) = p21(t)x1(t) + p22(t)x2(t) + · · ·+ p2n(t)xn(t) + f2(t)

· · ·
x′
n(t) = pn1(t)x1(t) + pn2(t)x2(t) + · · ·+ pnn(t)xn(t) + fn(t)

, (4.1.2)

where pij(t) is a continuous function for all 1 ≤ i, j ≤ n and fi(t) is a continuous function for
all 1 ≤ i ≤ n, in concise form as

x′(t) = P (t)x(t) + f(t)

where x(t) is the column vector-valued function

x(t) =

à
x1(t)
x2(t)
·
·

xn(t)

í
,
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x′(t) is its derivative, f(t) is the column vector-valued function

f(t) =

à
f1(t)
f2(t)
·
·

fn(t)

í
,

and P (t) = [pij(t)] is the matrix-valued function

P (t) =

à
p11(t) p12(t) · · · · · · p1n(t)
p21(t) p22(t) · · · · · · p2n(t)
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

pn1(t) pn2(t) · · · · · · pnn(t)

í
,

which we refer to as the coefficient matrix of the system.
A solution of the linear system (4.1.2), defined on an open interval I ⊂ R, is a column

vector-valued function x(t) whose elements x1(t), . . . , xn(t) are continuously differentiable on I
and satisfy the n differential equations of which the system (4.1.2) consists.

We would like to investigate solutions to a given linear system as in (4.1.2). The fundamental
starting point, just as in the case of a single differential equation, is an abstract result on
existence and uniqueness of solutions to initial value problems associated to linear systems of
differential equations.

Theorem 4.1.6 (Existence and uniqueness of solutions to IVPs for linear systems). Suppose
the functions pij(t), 1 ≤ i, j ≤ n, and fi(t), 1 ≤ i ≤ n are all continuous on an open interval

I ⊂ R. Then, for every a ∈ I and every column vector b =
(
b1 b2 · · bn

)T
, there exists a

unique solution x(t) =
(
x1(t) x2(t) · · xn(t)

)T
to the linear system (4.1.2) which is defined

over the entire interval I and satisfies the initial condition x(a) = b.

In order to understand the general structure of the set of solutions to the linear system (4.1.2)
(that is, in order to understand its general solution), we first look at the associated homoge-
neous system

x′(t) = P (t)x(t) ,

which is obtained from (4.1.2) by replacing f(t) with the zero column vector. For homogeneous
linear systems, a superposition principle holds.

Theorem 4.1.7 (Principle of superposition). Consider a homogeneous linear first-order
system

x′(t) = P (t)x(t) ,

and let x(1)(t), . . . , x(n)(t) be n vector-valued solutions of the system. If c1, . . . , cn are real
numbers, then the linear combination

x(t) = c1x
(1)(t) + · · ·+ cnx

(n)(t)

is also a solution of the system.

We provide the elementary proof of the principle.

Proof. Using the fact that differentiation of matrix-valued functions preserves addition
and scalar multiplication, we can write

x′(t) = (c1x
(1)(t) + · · ·+ cnx

(n)(t))′ = c1x
(1)(t)′ + · · ·+ cnx

(n)(t)′ .

Now each x(i)(t) is a solution to the system, so that

x(i)(t)′ = P (t)x(i)(t) for all 1 ≤ i ≤ n .
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We deduce from the above that

x′(t) = c1P (t)x(1)(t) + · · ·+ cnP (t)x(n)(t) = P (t)(c1x
(1)(t) + · · ·+ cnx

(n)(t)) ,

where the last equality follows from distributivity of matrix multiplication with respect to
matrix addition. We have thus shown that

x′(t) = P (t)x(t) ,

that is, x(t) is a solution of the system, as desired. □

4.1.6. Independence and general solutions of homogeneous linear systems.

Definition 4.1.8 (Linear dependence of functions). A collection of n column vector-valued
functions x(1)(t), . . . , x(n)(t), defined over an open interval I ⊂ R, is said to be linearly de-
pendent if there exist real numbers c1, . . . , cn, not all zero, such that

c1x
(1)(t) + · · ·+ cnx

(n)(t) = 0 for all t ∈ I.

If the functions are not linearly dependent, then they are called linearly independent.

Definition 4.1.9 (Wronskian). Given n column vector-valued functions

x(1)(t) =

à
x11(t)
x21(t)

·
·

xn1(t)

í
, · · · , x(n)(t) =

à
x1n(t)
x2n(t)

·
·

xnn(t)

í
,

their Wronskian is the real-valued function given by the determinant

W (t) =

∣∣∣∣∣∣∣∣∣∣
x11(t) x12(t) · · · · · · x1n(t)
x21(t) x22(t) · · · · · · x2n(t)
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

xn1(t) xn2(t) · · · · · · xnn(t)

∣∣∣∣∣∣∣∣∣∣
.

Proposition 4.1.10 (Wronskian of solutions). Let x(1)(t), . . . , x(n)(t) be solutions to the
homogeneous linear system

x′(t) = P (t)x(t) ,

defined over an open interval I ⊂ R. Then the following hold:

(1) if the functions x(1)(t), . . . , x(n)(t) are linearly dependent, then their Wronskian W (t)
vanishes for every t ∈ I.

(2) if the functions x(1)(t), . . . , x(n)(t) are linearly independent, then W (t) ̸= 0 for all t ∈ I.

Proof. The first assertion does not necessitate the assumption that the x(i)’s are solutions
to the given system; it is an elementary linear-algebraic consequence of linear dependence.

As far as the second assertion is concerned, suppose that there is t0 ∈ I such thatW (t0) = 0.
It follows from linear algebra that the column vectors x(1)(t0), . . . , x

(n)(t0) are linearly depen-
dent: there are real numbers c1, . . . , cn, not all zero, such that

c1x
(1)(t0) + · · ·+ cnx

(n)(t0) = 0 .

It follows that the column-vector valued function

x(t) = c1x
(1)(t) + · · ·+ cnx

(n)(t)

is a solution to the given linear system (by the superposition principle) satisfying the initial
condition x(t0) = 0. Uniqueness of solutions to IVP’s for linear systems yields that, necessarily,

x(t) = 0 ,

that is, the functions x(1)(t), . . . , x(n)(t) are linearly dependent. □



4.1. MATRICES AND LINEAR SYSTEMS 37

As for single differential equations, by the general solution of a linear system

x′(t) = P (t)x(t) + f(t)

we mean the set of all solutions of the system.

Theorem 4.1.11 (General solution to homogeneous linear systems). Consider a homoge-
neous linear system

x′(t) = P (t)x(t) ,

and let x(1)(t), . . . , x(n)(t) be linearly independent solutions of the system, defined over an open
interval I ⊂ R. If x(t) is a solution of the system, then there exist real numbers c1, . . . , cn such
that

x(t) = c1x
(1)(t) + · · · cnx(n)(t) .

As a consequence, the general solution of the system is given by

x(t) = c1x
(1)(t) + · · ·+ cnx

(n)(t) , c1, . . . , cn ∈ R.

Proof. Fix a point t0 ∈ I, and let b = x(t0). Since the x(i)’s are linearly independent, so
are the vectors

b1 = x(1)(t0), . . . , bn = x(n)(t0) .

It follows from linear algebra that b can be expressed as a linear combination of the bi’s, namely

b = c1b1 + · · ·+ cnbn

for some real numbers c1, . . . , cn. Consider now the column vector-valued function

y(t) = c1x
(1)(t) + · · ·+ cnx

(n)(t) ;

by the superposition principle, it is a solution to the given linear system. Furthermore, it
satisfies the initial condition

y(t0) = c1b1 + · · · cnbn = b

by construction. On the other hand, we already know that the function x(t) is a solution to
the very same IVP; uniqueness of solutions forces

y(t) = x(t) ,

that is, x(t) is a linear combination of the x(i)’s. □

4.1.7. General solutions of non-homogeneous linear systems.

Theorem 4.1.12 (General solution to non-homogeneous linear systems). Consider a non-
homogeneous linear system

x′(t) = P (t)x(t) + f(t) .

Let xp(t) be a particular solution of the system, and let x(1)(t), . . . , x(n)(t) be linearly independent
solutions of the associated homogeneous linear system

x′(t) = P (t)x(t) .

Then, the general solution of the non-homogeneous system is given by

x(t) = xp(t) + c1x
(1)(t) + · · ·+ cnx

(n)(t) , c1, . . . , cn ∈ R.

Proof. Let c1, . . . , cn be real numbers. Then, by the superposition principle, the linear
combination

c1x
(1)(t) + · · ·+ cnx

(n)(t)

is a solution to the homogeneous system

x′(t) = P (t)x(t) .

As a consequence, the function

x(t) = xp(t) + c1x
(1)(t) + · · ·+ cnx

(n)(t)
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satisfies, by linearity of derivatives,

x′(t) = x′
p(t) + (c1x

(1)(t) + · · ·+ cnx
(n)(t))′ = P (t)xp(t) + f(t) + P (t)(c1x

(1)(t) + · · ·+ cnx
(n)(t))

= P (t)x(t) + f(t) ,

that is, it is a solution to the given non-homogeneous linear system.
Conversely, suppose x(t) solves the given non-homogeneous linear system. Then the differ-

ence x(t)− xp(t) satisfies

(x(t)− xp(t))
′ = x(t)′ − xp(t)

′ = P (t)x(t) + f(t)− P (t)xp(t)− f(t) = P (t)(x(t)− xp(t)) ,

that is, it solves the associated homogeneous system. It follows that x(t) − xp(t) is a linear
combination of the x(i)’s, namely there are real numbers c1, . . . , cn such that

x(t) = xp(t) + c1x
(1)(t) + · · ·+ cnx

(n)(t) .

□

4.2. The eigenvalue method for homogeneous systems

4.2.1. First case: two distinct real eigenvalues.

Theorem 4.2.1. Let

x′(t) = Ax(t)

be a homogeneous 2× 2 linear system. Suppose that A has two distinct real eigenvalues λ1, λ2.
Let v1 and v2 be eigenvectors of A relative to the eigenvalues λ1 and λ2, respectively. Then v1
and v2 are linearly independent. As a consequence, the the functions

x(1)(t) = eλ1tv1 , x(2)(t) = eλ2tv2

are linearly independent solutions to the given system, whose general solution is therefore given
by

x(t) = c1x
(1)(t) + c2x

(2)(t) , c1, c2 ∈ R.

Proof. The fact that eigenvectors relative to distinct eigenvalues are linearly independent
is standard result in linear algebra, and will not be demonstrated here.

Let us show that linear independence of v1 and v2 yields linear independence of x(1) and
x(2). For that, we simply compute the Wronskian of x(1) and x(2) at t = 0:

W (0) =
∣∣eλ1·0v1 eλ2·0v2

∣∣ = ∣∣v1 v2
∣∣ ̸= 0 ,

the last step following because the determinant of a matrix whose columns are linearly inde-
pendent is non-zero. By Theorem ??, we conclude that x(1) and x(2) are linearly independent
column vector-valued functions.

The last assertion of the theorem follows directly from Theorem ??. □

Example 4.2.2. Let us find a general solution of the homogeneous linear system®
x′
1 = 4x1 + 2x2

x′
2 = 3x1 − x2

.

The coefficient matrix of the system is

A =

Å
4 2
3 −1

ã
.

We start by finding the eigenvalues of A: these are the roots of the polynomial

det(A− λI) =

∣∣∣∣4− λ 2
3 −1− λ

∣∣∣∣ = (4− λ)(−1− λ)− 6 = λ2 − 3λ− 10 = (λ− 5)(λ+ 2) .

We thus have two distinct real eigenvalues: λ = −2 and λ = 5.
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We start with λ = −2, and find an associated eigenvector. This is a vector v = (a, b)T

satisfying (A+ 2I)v = 0, that is, the linear system®
6a+ 2b = 0

3a+ b = 0
.

It is clear by inspection that we can choose a = 1, b = −3. We thus get a corresponding
solution to our linear system of differential equations, given by

x(1)(t) = e−2t

Å
1
−3

ã
=

Å
e−2t

−3e−2t

ã
.

4.2.2. Second case: a pair of complex-conjugate eigenvalues. Suppose now we are
in a situation were the characteristic polynomial of the 2 × 2 matrix A has no real roots. In
this case, necessarily, it has two non-real complex-conjugate roots, which means that A has a
pair of non-real complex conjugate eigenvalues,

λ1 = λ , λ2 = λ .

Let now v be an eigenvector of A corresponding to the eigenvalue λ. Taking the complex
conjugate of the equation

Av = λv ,

which is verified by definition of v, we obtain

Av = λv ,

but since A has real coefficients, A = A, whence we get

Av = λv .

It follows that the complex-conjugate vector v is an eigenvalue associated to the complex-
conjugate eigenvalue λ.

The general complex-valued solution to the homogeneous system

x′(t) = Ax

is thus given by

y(t) = c1e
λtv + c2e

λtv , c1, c2 ∈ C.
In order to get a pair of linearly independent real-valued solutions to the system, which is
our ultimate goal, we resort to the superposition principle, which is equally valid for complex-
valued solutions. The principle tells us that the real as well as the imaginary part of any
complex-valued solution are real-valued solutions to the system: indeed, whenever x(t) is a
complex-valued solution to the system, we can write its real and imaginary parts, respectively,
as

Re y(t) =
y(t) + y(t)

2
, Im y(t) =

y(t)− y(t)

2i
.

Since the complex-conjugate x(t) is also a complex-valued solution to the system, as emerges
from taking the complex-conjugate of the equation

y′(t) = Ay(t) ,

recalling that A = A, the superposition principle yields that

x(1)(t) = Re y(t) , x(2)(t) = Im y(t)

are real-valued solutions to the system. It is now a fact that, if y(t) takes the form

y(t) = eλtv
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for some non-real complex scalar λ and some non-real complex vector v, as above, then the
resulting x(1) and x(2) are linearly independent. The general solution to the homogeneous
system will thus be given by

x(t) = c1x
(1)(t) + c2x

(2)(t) , c1, c2 ∈ R.

Theorem 4.2.3. Let

x′(t) = Ax(t)

be a homogeneous 2×2 linear system. Suppose that A has a pair of non-real complex-conjugate
eigenvalues λ1 = λ, λ2 = λ. Let v be a complex eigenvector of A relative to the eigenvalue λ. If

y(t) = eλtv

is the corresponding complex-valued solution to the system, then the functions

x(1)(t) = Re y(t) , x(2)(t) = Im y(t)

are linearly independent real-valued solutions to the given system, whose general solution is
therefore given by

x(t) = c1x
(1)(t) + c2x

(2)(t) , c1, c2 ∈ R.

Example 4.2.4. Let’s find the general solution to the linear system®
x′
1 = 4x1 − 3x2

x′
2 = 3x1 + 4x2

,

The coefficient matrix is

A =

Å
4 −3
3 4

ã
,

and its characteristic polynomial is∣∣∣∣4− λ −3
3 4− λ

∣∣∣∣ = (4− λ)2 + 9 = λ2 − 8λ+ 25 .

We have thus a pair of complex-conjugate eigenvalues, namely

λ1,2 = 4±
√
−9 = 4± 3i .

Let’s find a complex eigenvector for λ1 = 4+3i. We need to find a non-trivial complex solution
to the linear system ®

4− (4 + 3i)a− 3b = 0

3a+ (4− (4 + 3i))b = 0
,

that is, to ®
−3ia− 3b = 0

3a− 3ib = 0
.

Clearly, the first equation is simply the second one multiplied by −i, hence we are only left
with the second equation

3a− 3ib = 0 ;

a non-trivial solution for it is given by a = i, b = 1. Thus, the column vector

v1 =

Å
i
1

ã
is an eigenvector for the eigenvalue 4 + 3i. It follows that the complex vector-valued function

y(t) = e(4+3i)t

Å
i
1

ã
=

Å
ie(4+3i)t

e(4+3i)t

ã
is a complex-valued solution to our linear system.
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In order to find real-valued solutions, we write

y(t) = e4t
Å
ie3it

e3it

ã
= e4t

ÅÅ
− sin 3t
cos 3t

ã
+ i

Å
cos 3t
sin 3t

ãã
separating the real and imaginary parts. The latter are given, respectively, by

x(1)(t) = e4t
Å
− sin 3t
cos 3t

ã
, x(2)(t) = e4t

Å
cos 3t
sin 3t

ã
,

and by the discussion above they are linearly independent real-valued solutions to our original
system. The general solution is thus given by

x(t) = e4t
Å
c1

Å
− sin 3t
cos 3t

ã
+ c2

Å
cos 3t
sin 3t

ãã
, c1, c2 ∈ R.

4.3. Multiple eigenvalue solutions

We finally deal with the last remaining case, when the characteristic polynomial of the
coefficients matrix A has a double root, namely a single real root λ with multiplicity two. In this
case, it is definitely possible, by definition of eigenvalue, to find an eigenvector v corresponding
to the eigenvalue λ. Attached to it there is a solution

y(t) = eλtv

to our homogeneous system
x′(t) = Ax(t) .

However, it might not be possible to find two linearly independent solutions of the above form,
or equivalently, it is not always the case that one can find two linearly independent eigenvectors
v1, v2 relative to the single eigenvalue λ.

Example 4.3.1. Consider the homogeneous system®
x′
1 = x1 − x2

x′
2 = x1 + 3x2

.

Its coefficient matrix is

A =

Å
1 −1
1 3

ã
,

whose characteristic polynomial is∣∣∣∣1− λ −1
1 3− λ

∣∣∣∣ = (1− λ)(3− λ) + 1 = λ2 − 4λ+ 4 = (λ− 2)2 ;

we thus have a unique real root λ = 2, with double multiplicity. Let’s determine all eigenvectors
of A corresponding to its unique eigenvalue 2. We need to solve the linear system®

−a− b = 0

a+ b = 0
;

the first equation is obtained by the second one multiplying both sides by −1, whence we are
only left with the single equation

a+ b = 0 .

Solutions to this equation are given by

a = α , b = −α

for every fixed real value of α; thus, the sought after eigenvectors are all scalar multiples of the
vector

v =

Å
1
−1

ã
.

It is therefore impossible to find two linearly independent eigenvectors in this case.
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Remark 4.3.2. It is a fact from linear algebra, which we shall not need, that when A
has a single eigenvalue of double multiplicity, then it is possible to find linearly independent
eigenvectors if and only if A takes the diagonal form

A =

Å
λ 0
0 λ

ã
for some λ ∈ R, thus if and only if the original homogeneous system is of the form®

x′
1 = λx1

x′
2 = λx2

; (4.3.1)

in this case λ is the unique eigenvalue of A and every vector

v =

Å
v1
v2

ã
is an eigenvector.

Observe that the homogeneous system in (4.3.1) can be treated as a pair of independent
differential equations, one for the unknown x1 and the other for the unknown x2; there would
be no need to develop the theory of homogeneous linear systems presented in this chapter to
deal with trivial systems of this form.

When we treated homogeneous linear differential equations of the second order, in the case
of a double root λ for the characteristic equation we found out that the pair

eλt , teλt

consists of linearly independent solutions to the equation. This suggests we might try a similar
approach for linear systems. Let us thus verify whether the column vector-valued function

teλtv ,

where λ is the unique eigenvalue of A and v is a choice of eigenvector for λ, is a solution to the
system. We compute, using the product rule for derivatives of scalar multiplication,

(teλtv)′ = (eλt + λteλt)v + teλtv′ = eλt(1 + λt)v ;

on the other hand we have that

A(teλtv) = teλtAv = teλtλv = λteλtv ,

whence the two last displayed expressions are equal, as functions of t, if and only if

λt = 1 + λt for all t ,

which is clearly impossible.
We have thus verified that our initial guess teλtv is never a solution to the system. How-

ever, we don’t completely give up hope on the approach, and slightly generalize the type of
functions we would like to consider as candidates for solutions to the system which are linearly
independent from eλtv. We look for functions of the form

eλt(tv1 + v2)

where v1 is an eigenvector of A corresponding to λ and v2 is a second vector to be determined.
In order to check whether the last displayed function is a solution, we compute

(eλt(tv1 + v2))
′ = λeλt(tv1 + v2) + eλtv1 = eλt((1 + λt)v1 + λv2) .

On the other hand, we have

A(eλt(tv1 + v2)) = eλt(tAv1 + Av2) = eλt(λtv1 + Av2) ,

so that the function under consideration is a solution if and only if

(1 + λt)v1 + λv2 = λtv1 + Av2
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for all t, namely if and only if
v1 = (A− λ)v2 .

We thus need to look for column vectors v such that the vector

(A− λI)v

is an eigenvector of A relative to the eigenvalue λ. In particular, if this is the case then

(A− λI)2v = (A− λI)(A− λI)v = 0 .

Thus we would find such vectors v by finding non-zero solutions to the linear system

(A− λI)2v = 0 ,

in the unknown v =
(
a b

)T
and with coefficient matrix (A− λI)2, and hoping that the vector

(A− λI)v

is non-zero, in which case it is automatically an eigenvector of A relative to λ, as desired. To
summarize, we need to find non-zero vectors v such that

(A− λI)2v = 0 but (A− λI)v ̸= 0 .

If we are able to find such a vector v, then have reached our goal of find the general solution
to our initial homogeneous system.

Theorem 4.3.3. Let
x′(t) = Ax(t)

be a homogeneous 2 × 2 linear system. Suppose that A has unique eigenvalue λ, and is not of
the form

A =

Å
λ 0
0 λ

ã
.

Then there is a vector v2 with the property that

v1 = (A− λI)v2 ̸= 0 and (A− λI)2v2 = (A− λI)v1 = 0 .

Furthermore, the functions

x(1)(t) = eλtv1 , x(2)(t) = eλt(tv1 + v2)

are linearly independent solutions of the given system, whose general solution is therefore given
by

x(t) = c1x
(1)(t) + c2x

(2)(t) , c1, c2 ∈ R.

Proof. The existence of a vector v2 with the claimed property is a fact from linear algebra,
for which we do not provide an argument here. The fact that x(2)(t) is a solution follows from
the claimed properties of v1 and v2 and the discussion preceding the theorem. That x(1)(t) is a
solution we already knew from previous sections, since v1 is an eigenvector of A associated to
the eigenvalue λ. It remains to show that x(1) and x(2) are linearly independent. For this, we
evaluate their Wronskian at t = 0:

W (0) =
∣∣eλ·0v1 e(λ·0)(0v1 + v2)

∣∣ = ∣∣v1 v2
∣∣ .

It is now a linear-algebraic fact that any pair (v1, v2) of vectors satisfying the claimed properties
is linearly independent, whence W (0) ̸= 0 and x(1), x(2) are linearly independent functions. □

Example 4.3.4. We continue Example ??. We found a unique eigenvalue λ = 2, all of
whose eigenvectors are given by non-zero scalar multiples of the vectorÅ

1
−1

ã
.

According to Theorem 4.3.3, we need to find a vector v2 with the property that

(A− λI)2v2 = 0 but v1 = (A− λI)v2 ̸= 0 .
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We need to compute the matrix

(A− 2I)2 = (A− 2I)(A− 2I) =

Å
−1 −1
1 1

ãÅ
−1 −1
1 1

ã
=

Å
0 0
0 0

ã
.

Thus (A − 2I)2 is the zero matrix, so that any vector v2 satisfies (A − 2I)2v2 = 0. We only
need to make sure that v1 = (A− 2I)v2 ̸= 0, that is, that v2 is not an eigenvector of A for its
unique eigenvalue 2. For this, it is necessary and sufficient that v2 is not a scalar multiple of(
1 −1

)T
, so that we can for instance choose

v2 =

Å
1
0

ã
, v1 = (A− 2I)v2 =

Å
−1 −1
1 1

ãÅ
1
0

ã
=

Å
−1
1

ã
.

We conclude that the functions

x(1)(t) = e2t
Å
−1
1

ã
, x(2)(t) = e2t

Å
t

Å
−1
1

ã
+

Å
1
0

ãã
are linearly indepedent solutions to the system®

x′
1 = x1 − x2

x′
2 = x1 + 3x2

,

whose general solution is therefore given by

x(t) = eλt
Å
c1

Å
−1
1

ã
+ c2

Å
t

Å
−1
1

ã
+

Å
1
0

ããã
, c1, c2 ∈ R.

In the previous example, we saw that the matrix

(A− λI)2 ,

where λ is the unique eigenvalue of A, is the zero matrix, so that we could pick any non-zero
v2 with the sole caveat that v1 = (A − λI)v2 ̸= 0. This is actually a general fact coming from
linear algebra, which we will not use nor prove.

Theorem 4.3.5. Let A be a 2× 2 matrix with a unique eigenvalue λ. Then the matrix

(A− λI)2

is the zero matrix.



CHAPTER 5

Laplace transform methods

Functions in this chapter are real-valued.

5.1. Laplace transforms and inverse transforms

Definition 5.1.1 (Laplace transform). Let f(t) be a function defined for all t ≥ 0. The
Laplace transform of f is the function F given by

F (s) = L{f(t)} =

∫ ∞

0

e−stf(t) dt

for all real values of s for which the improper integral is well defined and converges.

Recall that an improper integral over the infinite half-line [a,∞], a ∈ R, is defined as a limit
of integrals over bounded intervals:∫ ∞

a

g(t) dt = lim
b→∞

∫ b

a

g(t) dt .

If the limit above exists, we say that the improper integral converges, else we say that it diverges.

Example 5.1.2. Consider the function f(t) = 1. Then the Laplace transform of f(t),
according to the definition, is given by

F (s) =

∫ ∞

0

e−st · 1 dt = lim
b→∞

∫ b

0

e−st dt = −1

s
lim
b→∞

e−st|t=b
t=0 = −1

s
(−1 + lim

b→∞
e−sb) ,

where the third inequality is valid provided that s ̸= 0. We see that, under this assumption,
the improper integral converges if and only if s > 0, in which case

F (s) =
1

s
.

For s = 0, we have the improper integral ∫ ∞

0

1 dt ,

which is clearly divergent. Thus the Laplace transform of f(t) = 1 is given by

F (s) =
1

s

for all s > 0.

Example 5.1.3. Consider the function f(t) = eat, for some fixed real number a. The
Laplace transform is then given by

F (s) =

∫ ∞

0

e−steat dt =

∫ ∞

0

e−(s−a)t dt =
1

a− s
lim
b→∞

e−(s−a)t|t=b
t=0 =

1

a− s
(−1 + lim

b→∞
e−(s−a)b) ,

where the third equality holds provided s ̸= a. In this case, we see that the improper integral
converges if and only if s− a > 0, that is, if and only if s > a. For s = a we get∫ ∞

0

1 dt ,

45
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which is divergent. Thus the Laplace transform of f(t) = eat is given by

F (s) =
1

s− a

for all s > a.

Example 5.1.4. We now compute the Laplace transform of a power function f(t) = ta,
where a is a fixed real number. It is most conveniently expressed in terms of the Gamma
function Γ(x), which is defined for all x > 0 by the formula

Γ(x) =

∫ ∞

0

e−ttx−1 dt .

Observe that the condition x > 0 ensures that the integral∫ 1

0

e−ttx−1 dt ,

which is improper for x < 1, converges; on the other hand, the improper integral∫ ∞

1

e−ttx−1 dt

is always convergent, as the exponential factor e−t decreases to zero much faster than any
polynomial function of t can increase to infinity.

Observe that

Γ(1) =

∫ ∞

0

e−t dt = L{1}(1) = 1

1
= 1 .

Also, integration by parts yields that, for all x > 0,

Γ(x+ 1) =

∫ ∞

0

e−ttx dt = −e−ttx|t=∞
t=0 + x

∫ ∞

0

e−ttx−1 dt = xΓ(x) .

Thus

Γ(2) = 1Γ(1) = 1 , Γ(3) = 2Γ(2) = 2 , Γ(4) = 3Γ(3) = 3 · 2 ,

and, inductively on the integer n ≥ 1, we get that

Γ(n+ 1) = n! .

The Gamma function is thus naturally regarded as an extension of the factorial function to the
real line.

As for the Laplace transform of ta, we have

L{ta}(s) =
∫ ∞

0

e−stta dt = s−(a+1)

∫ ∞

0

e−uua du = s−(a+1)

∫ ∞

0

e−uu(a+1)−1 du =
Γ(a+ 1)

sa+1

where in the second equality we used the change of variable u = st. As the Gamma function is
defined on the positive half-line, we deduce that

L{ta}(s) = Γ(a+ 1)

sa+1

for all s > 0 and a > −1. In particular, for n ≥ 0 an integer, we get

L{tn}(s) = n!

sn+1

Example 5.1.5. The identity

L{eat}(s) = 1

s− a
holds also for every complex number a with real part > −1. Since, for every ω ∈ R,

cos(ωt) =
1

2
(eiωt + e−iωt) ,
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we get by linearity of the Laplace transform that

L{cos(ωt)} =
1

2

Å
1

s− iω
+

1

s+ iω

ã
=

s

s2 + ω2
.

Similarly, since

sin(ωt) =
1

2i
(eiωt − e−iωt) ,

we deduce that

L{sin(ωt)} =
1

2i

Å
1

s− iω
− 1

s+ iω

ã
=

ω

s2 + ω2
.

Alternatively, it is possible to derive the above expressions for the Laplace transform of cos(ωt)
and sin(ωt) directly from the definition, by means of an integration by parts.

Theorem 5.1.6 (Linearity of Laplace transforms). Let f(t), g(t) be two functions, a, b real
numbers. Then

L{af(t) + bg(t)} = aL{f(t)}+ bL{g(t)}
for all s for which the Laplace transform of both f and g exists.

Define

u(t) =

®
1 if t ≥ 0

0 if t < 0
.

Example 5.1.7. Let f(t) = ua(t) = u(t− a). Its Laplace transform is given by

F (s) =
1

s
, s > 0

if a ≤ 0, as in this case ua coincides with the function 1 over [0,∞), and by

F (s) =

∫ ∞

0

e−stua(t) dt =

∫ ∞

a

e−st dt =
1

s
(e−as − lim

b→∞
e−sb) =

e−sa

s

if a > 0.

Theorem 5.1.8 (Existence of Laplace transforms). Assume the f(t) is piecewise continuous
for t ≥ 0 and satisfies the following: there exist real numbers c,M, T > 0 such that

|f(t)| ≤ Mect

for all t ≥ T . Then the Laplace transform L{f(t)} exists for all s > c.

If f(t) is a function satisfying the second assumption in the theorem, namely the existence
of real numbers c,M, T > 0 such that

|f(t)| ≤ Mect

for all t ≥ T , we say that f is of exponential order as t → ∞.

Proof. Fix a real number s > c. We need to show that the improper integral∫ ∞

0

e−stf(t) dt

converges. Since f(t) is piecewise continuous, e−stf(t) is integrable over any bounded interval,
in particular the definite integral ∫ T

0

e−stf(t) dt

exists and is finite. By additivity of integrals over disjoint intervals, it thus suffices to show
that the improper integral ∫ ∞

T

e−stf(t) dt
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converges. Now, for any b > T , we have∫ b

T

|e−stf(t)| dt ≤ M

∫ b

T

e−(s−c)t dt =
M

s− c
(1− e−(s−c)b) ,

where the second inequality is a consequence of the exponential order assumption on f(t). It
follows that

lim
b→∞

∫ b

T

|e−stf(t)| dt ≤ M

s− c
lim
b→∞

(1− e−(s−c)b) =
M

s− c
,

the last equality following from our assumption s > c. As a consequence, the improper integral∫ ∞

T

|e−stf(t)| dt

converges, and thus so does the improper integral∫ ∞

T

e−stf(t) dt ,

as claimed. □

Notice that, over the course of the previous proof, we have also shown that

lim
s→+∞

∫ ∞

T

e−stf(t) dt = 0 ;

observe also that, since f(t) is uniformly bounded on the closed interval [0, T ] (by piecewise
continuity), that is, there is M ′ > 0 such that

|f(t)| ≤ M ′

for all 0 ≤ t ≤ M ′, we also have that

lim
s→+∞

∫ T

0

e−stf(t) dt = 0 .

Combining the previous two limits, we deduce the following assertion.

Corollary 5.1.9. Let the assumptions be as in Theorem 5.1.8. If F (s) is the Laplace
transform of f(t), then

lim
s→∞

F (s) = 0 .

Theorem 5.1.10 (Uniqueness of Laplace transforms). Suppose f(t) and g(t) are piecewise
continuous functions defined for t ≥ 0, both of exponential order as t → ∞. Assume their
Laplace transform F (s), G(s) satisfy

F (s) = G(s) for all s > c

for some c > 0. Then

f(t) = g(t)

for all t ≥ 0 which is a point of continuity both for f and g.

Thus two piecewise continuous functions of exponential order having the same Laplace
transform can differ only at their discontinuity points. In practice, this is not a serious problem
since we shall apply the Laplace transform to solutions of differential equations, which are
always everywhere continuous.

If f(t) is a continuous function of exponential order defined for t ≥ 0, then its Laplace
transform F (s) = L{f(t)} is uniquely determined by f , namely there is no other continuous
g(t) of exponential order satisfying L{g(t)} = L{f(t)}. We can thus speak of f(t) as the
inverse Laplace transform of the function F (s), and write

f(t) = L−1{F (s)} .
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Example 5.1.11. We have seen in Example ?? that the Laplace transform of the function
eat, a ∈ R, is 1

s−a
. This means, by definition, that eat is the inverse transform of 1

s−a
:

eat = L−1

ß
1

s− a

™
(t) .

Example 5.1.12. In Example ?? we computed the Laplace transform of the function ta,
a > −1, which equals Γ(a+ 1)/sa+1. Hence, using linearity of derivatives, we deduce that, for
all b > 00,

L−1

ß
1

sb

™
(t) =

1

Γ(b)
L−1

ß
Γ(b)

sb

™
(t) =

tb−1

Γ(b)
.

5.2. Transformation of initial value problems

Theorem 5.2.1 (Transform of derivatives). Let f(t) be a differentiable function, defined
for t ≥ 0, with piecewise continuous derivative f ′(t). Suppose f is of exponential order, namely
there are c,M, T > 0 with

|f(t)| ≤ Mect

for all t ≥ T . Then, for every s > c, the Laplace transform L{f ′(t)}(s) is defined and satisfies

L{f ′(t)}(s) = sL{f(t)}s− f(0) .

Proof. The statement follows from a simple integration by parts:

L{f ′(t)}(s) =
∫ ∞

0

e−stf ′(t) dt = e−stf(t)|t=∞
t=0 + s

∫ ∞

0

e−stf(t) dt = sL{f(t)}(s)− f(0) ,

where

lim
t→∞

e−stf(t) = 0

holds in light of the exponential order assumption on f , combined with the fact that s > c. □

Consider an initial value problem associated to a second-order linear differential equation
with constant coefficients:

ax′′(t) + bx′(t) + cx(t) = f(t) , x(0) = x0 , x′(0) = x′
0 (5.2.1)

where a, b, c, x0, x
′
0 are real numbers and f(t) is a given continuous function. Suppose x(t) is a

solution to the IVP which is of exponential order, and let X(s) denote its Laplace transform,
which is well defined for all sufficiently large values of s. Similarly, by virtue of Theorem 5.2.1,
the Laplace transforms of x′(t) and x′′(t) are well defined for all such values of s, and satisfy

L{x′}(s) = sX(s)−x(0) = sX(s)−x0 , L{x′′}(s) = sL{x′}(s)−x′(0) = s(sX(s)−x0))−x′
0 .

Let also F (s) be the Laplace transform of the function f(t). Then taking Laplace transforms
on both sides of the differential equation in (5.2.1), using linearity of Laplace transforms and
the computations above, yields

a(s2X(s)− x0s− x′
0) + b(sX(s)− x0) + cX(s) = F (s) .

This is a purely algebraic (in particular, not differential) equation for the Laplace transform
X(s). Rearranging terms on the left-hand side, and transferring every summand everything
not involing X(s) to the right-hand side, we obtain

X(s)(as2 + bs+ c) = F (s) + ax0s+ ax′
0 − bx0 ,

whence, at least for those s such that as2 + bs+ c ̸= 0 (there are at most two such s in R), we
get the Laplace transform X(s) of the solution x(t) satisfies

X(s) =
F (s) + ax0s+ ax′

0 − bx0

as2 + bs+ c
.
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Since x(t) is assumed to be of exponential order, Theorem 5.1.10 ensures the possibility of
recovering x(t) from its Laplace transform X(s) by taking the inverse Laplace transform:

x(t) = L−1{X(s)}(t) .

Example 5.2.2. Let’s solve the initial value problem

x′′ − x′ − 6x = 0 , x(0) = 2 , x′(0) = −1

via the Laplace transform method. Let X(s) denote the Laplace transform of x(t); then the
Laplace transform of x′(t) is sX(s) − x(0) = sX(s) − 2, and the Laplace transform of x′′(t)
is s(sX(s) − 2) − x′(0) = s2X(s) − 2s + 1. Taking the Laplace transform of the differential
equation, and observing that the Laplace transform of the zero function is the zero function,
we get

s2X(s)− 2s+ 1− (sX(s)− 2)− 6X(s) = 0 ,

that is,
X(s)(s2 − s− 6) = 2s− 3 ,

whence

X(s) =
2s− 3

s2 − s− 6
.

In order to find the solution x(t), we need to take the inverse Laplace transform of the function
we obtained for X(s). We have computed in Example ?? the inverse transform of functions of
the form 1

s−a
, a ∈ R; here we can boil matters down to such functions via a partial fraction

decomposition, and using linearity of the inverse transform. We write

2s− 3

s2 − s− 6
=

2s− 3

(s+ 2)(s− 3)
=

A

s+ 2
+

B

s− 3
,

and we need to find A and B such the previous equality is satisfied. We have

A

s+ 2
+

B

s− 3
=

(A+B)s+ 2B − 3A

(s+ 2)(s− 3)
,

so that we need to solve the linear system®
A+B = 2

−3A+ 2B = −3
;

Plugging B = 2− A into the second equation we obtain

−3A+ 2(2− A) = −3 =⇒ A =
7

5
=⇒ B =

3

5
.

Thus

x(t) = L−1

ß
2s− 3

s2 − s− 6

™
=

7

5
L−1

ß
1

s+ 2

™
+

3

5
L−1

ß
1

s− 3

™
=

7

5
e−2t +

3

5
e3t .

Example 5.2.3. We consider a forced damped spring-mass dashpot system, described by
the differential equation

mx′′(t) + cx′(t) + kx(t) = A cos(ωt) +B sin(ωt)

for fixed A,B ∈ R, and subject to the initial conditions

x(0) = x0 , x′(0) = x′
0

for some given x0, x
′
0 ∈ R. Recall that m is the mass of the object attached to the spring, c is

the resistance constant, and k is the spring constant, c, k,m > 0.
Letting X(s) denote the Laplace transform of x(t), we deduce the algebraic equation for

X(s):

m(s(sX(s)− x0)− x′
0) + c(sX(s)− x0) + kX(s) = A

s

s2 + ω2
+B

ω

s2 + ω2
,
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whence

X(s) =
As+Bω

(s2 + ω2)(ms2 + cs+ k)
+

mx0s+mx′
0 + cx0

ms2 + cs+ k
.

We see thus that X(s) can be written as a sum of two terms, one of which only depends only
on the totality of the forces imparted upon the system, while the second one depends on the
initial conditions but not on the external force exerted on the system.

Suppose, for instance, we have A = B = ω = m = 1, x0 = 0, x′
0 = 3, c = 5, k = 4. Then

X(s) =
s+ 1

(s2 + 1)(s2 + 5s+ 4)
+

3

s2 + 5s+ 4
. (5.2.2)

In order to apply the inverse Laplace transform to recover the solution x(t), we apply the
method of partial fraction decomposition. Since s2 + 5s+ 4 = (s+ 1)(s+ 4), we first write

3

s2 + 5s+ 4
=

α

s+ 1
+

β

s+ 4
=

(α + β)s+ 4α + β

(s+ 1)(s+ 4)
,

from which we immediately get α = 1, β = −1. As far as the first summand on the right-hand
side of (5.2.2) is concerned, we decompose it as

s+ 1

(s2 + 1)(s2 + 5s+ 4)
=

1

(s2 + 1)(s+ 4)
=

αs+ β

s2 + 1
+

γ

s+ 4
=

(α + γ)s2 + (4α + β)s+ 4β + γ

(s2 + 1)(s+ 4)
.

We need to solve the 3× 3 linear system
α + γ = 0

4α + β = 0

4β + γ = 1

,

which readily yields

α = − 1

17
, β =

4

17
, γ =

1

17
.

In conclusion, applying linearity of the inverse Laplace transform, we deduce that

x(t) = − 1

17
L−1{ s

s2 + 1
}+ 4

17
L−1{ 1

s2 + 1
}+ 1

17
L−1{ 1

s+ 4
}+ L−1{ 1

s+ 1
} − L−1{ 1

s+ 4
}

= − 1

17
cos t+

4

17
sin t− 16

17
e−4t + e−t .

5.2.1. Laplace transform of integrals.

Theorem 5.2.4 (Laplace transform of integrals). Let f(t) be a continuous function, defined
for t ≥ 0. Suppose f is of exponential order, namely there are c,M, T > 0 with

|f(t)| ≤ Mect

for all t ≥ T . Set

g(t) =

∫ t

0

f(τ) dτ .

Then, for every s > c, the Laplace transform L{g(t)}(s) is defined and satisfies

L{g(t)}(s) = 1

s
L{f(t)}s .

Proof. Applying integration by parts and the fact that g′(t) = f(t) by the fundamental
theorem of calculus, we compute

L{g(t)}(s) =
∫ ∞

0

e−stg(t) dt = −1

s
e−stg(t)|t=∞

t=0 +
1

s

∫ ∞

0

e−stg′(t) dt =
g(0)

s
+

1

s
L{f(t)}(s) ,

which gives the desired conclusion as g(0) = 0 from the definition of g. □
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Phrasing the previous theorem in terms of the inverse transform, we have that if

L−1{F (s)} = f(t) ,

then

L−1

ß
F (s)

s

™
=

∫ t

0

f(τ) dτ .

5.3. Periodic and piecewise continuous input functions

5.3.1. Transforms of some piecewise continuous functions.

Theorem 5.3.1 (Laplace transform of translated functions). Let f(t) be a piecewise con-
tinuous function, and suppose the Laplace transform F (s) of f(t) exists for all s > c. Then
the Laplace transform of the function u(t− a)f(t− a) exists for all s > c+ a and, for all such
values of s,

L{u(t− a)f(t− a)}(s) = e−asF (s) .

The theorem admits, as usual, an interpretation in terms of inverse Laplace transforms. If

L−1{F (s)} = f(t) ,

then

L−1{e−asF (s)} = u(t− a)f(t− a)

for all real values of a. Therefore, if we are able to explicitly compute the inverse Laplace
transform of a certain function F (s), we also known how to explicitly compute the Laplace
transform of the function e−asF (s).

Example 5.3.2 (Discontinuous forcing). We examine a forced undamped spring-mass sys-
tem for which the motion of the mass is described by the initial value problem

x′′(t) + 4x(t) = f(t) , x(0) = x′(0) = 0 ,

where the external force f(t) = cos 2t is applied to the mass from time t = 0 to time t = 2π,
and at time t = 2π such force is turned off abruptly, the mass being then allowed to continue
its motion unimpeded.

Taking the Laplace transform on both sides of the differential equation, and factoring in
the initial conditions, we get

s2X(s) + 4X(s) = F (s)

where X(s) = L{f(t)} and F (s) = L{f(t)}. It follows that

X(s) =
F (s)

s2 + 4
.

Let us now compute F (s). Recall that the Laplace transform of the function cos 2t is given by

L{cos 2t} =
s

s2 + 4
.

The external force imparted on the mass is given by

f(t) =

®
cos 2t if 0 ≤ t < 2π

0 if t ≥ 2π
;

we can write it concisely, by means of the functions u(t− ·), as
f(t) = (1− u(t− 2π)) cos 2t .

Thus, applying Theorem 5.3.1 together with linearity of the Laplace transform, we deduce that

F (s) =
s(1− e−2πs)

s2 + 4
.
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Therefore, we obtain

X(s) =
s(1− e−2πs)

(s2 + 4)2
.

In order to find the inverse transform of X(s), and recover thus the unique solution x(t) to our
initial value problem, we first decompose X(s) as the sum

X(s) =
s

(s2 + 4)s
− e−2πs s

(s2 + 4)2
, (5.3.1)

and realize it suffices to find the inverse transform of
s

(s2 + 4)2
,

for in the second summand in (5.3.1) we can then apply Theorem 5.3.1.
Observe now that

L{t sin(ωt)} =

∫ ∞

0

e−stt sin(ωt) dt =
1

2i

∫ ∞

0

te−st(eiωt − e−iωt) dt

=
1

2i

∫ ∞

0

te−(s−iω)t dt− 1

2i

∫ ∞

0

te−(s+iω)t dt

=
1

2i
(L{t}(s− iω)− L{t}(s+ iω))

=
1

2i

Å
1

(s− iω)2
− 1

(s+ iω)2

ã
=

2ωs

(s2 + ω2)2
.

It follows that

L−1

ß
s

(s2 + 4)2

™
=

1

4
t sin 2t ,

and we can finally conclude that

x(t) =
1

4
sin 2t

Å
t− u(t− 2π)(t− 2π)

ã
.

5.3.2. Transforms of periodic functions. We say that a piecewise continuous function
f(t), defined for all t ≥ 0, is periodic with period p, where p > 0 is a given real number, if

f(t+ p) = f(t)

for all t ≥ 0.

Theorem 5.3.3 (Laplace transform of periodic functions). Let f(t) be a piecewise continu-
ous function. Suppose that f(t) is periodic with period p. Then the Laplace transform of F (s)
of f(t) exists for all s > 0 and is given by

F (s) =
1

1− e−ps

∫ p

0

e−stf(t) dt .

Proof.

F (s) =

∫ ∞

0

e−stf(t) dt =
∑
N∈N

∫ (N+1)p

Np

e−stf(t) dt =
∑
N∈N

∫ p

0

e−s(u+Np)f(u+Np) du

=

∫ p

0

e−stf(t) dt
∑
N∈N

e−sNp =
1

1− e−ps

∫ p

0

e−stf(t) dt .

□
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Example 5.3.4. Consider a spring-mass-dashpot system with m = 1, c = 4, k = 20. The
system is initially at rest, namely x(0) = x′(0) = 0, and the mass is acted upon beginning at
time t = 0 by an external force f(t) which is 2π-periodic and satisfies

f(t) =

®
20 if 0 ≤ t < π

−20 if π ≤ t < 2π
.

Let’s find the motion x(t) of the mass for all times t ≥ 0. Applyijng the Laplace transform to
the differential equation

x′′(t) + 4x′(t) + 20x(t) = f(t)

yields

s(sX(s)− x(0))− x′(0) + 4(sX(s)− x(0)) + 20X(s) = F (s) ,

where, as usual, X(s) = L{x(t)} and F (s) = L{f(t)}. We thus get the algebraic equation

(s2 + 4s+ 20)X(s) = F (s) ,

which implies that

X(s) =
F (s)

s2 + 4s+ 20
.

Let us compute F (s) using periodicity and Theorem 5.3.3. We have

F (s) =
1

1− e−2πs

∫ 2π

0

e−stf(t) dt =
20

1− e−2πs

Å∫ π

0

e−st dt−
∫ 2π

π

e−st dt

ã
= − 20

s(1− e−2πs)

Å
e−πs − 1− (e−2πs − e−πs)

ã
=

20

s(1− e−2πs)
(e−πs − 1)2 =

20(1− e−πs)

s(1 + e−πs)
.

We deduce that

X(s) =
1− e−πs

1 + e−πs

20

s(s2 + 4s+ 20)
.

5.4. Impulses and Delta Functions

In this section, we would like to model input external forces acting as impulses on the system
under consideration, namely with high intensity over a very tiny period of time. We can think
of it as a truly instantaneous impulse.

What matters is the value of the integral

p =

∫ b

a

f(t) dt ,

and not exactly how f(t) varies over the interval [a, b]. We call p the impulse of the force f(t)
over the interval [a, b]. A good approximation of an instantaneous force acting with intensity
p = 1 (we normalize the impulse for the sake of illustration) at a single instant of time a > 0
is the function

δa,ε(t) =

®
1/ε if a ≤ t ≤ a+ ε

0 otherwise

for very small values of ε. Indeed, the impulse of the force δa,ε(t) over [0,+∞] is

1

ε

∫ a+ε

a

1 dt = 1 .

We would like to take the limit as ε → 0 of such a construction. Observe, however, that if we
take the pointwise limit of δa,ε(t) as ε → 0 we get the function

δa(t) =

®
+∞ if t = a

0 otherwise
;
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on the other hand, if we could interchange limits and integral signs, we would get

1 = lim
ε→0

∫ +∞

0

δa,ε(t) dt =

∫ +∞

0

lim
ε→0

δa,ε(t) dt =

∫ +∞

0

δa(t) dt .

There clearly cannot exist any function δa(t) with the two above properies: any function which
is non-zero only at a single point has vanishing integral. Yet, the usefulness of a mathematical
object having both such properties, in an appropriately defined sense, is plain in modelling
phenomena of instantaneous acting forces.

5.4.1. The Dirac delta function as an operator acting on continuous functions.
We now attempt to give a precise mathematical meaning to the object δa(t), which we call
Dirac delta function, in accordance with historical tradition, even though as we shall see it
is not a function of the real variable t in the usual sense.

In order to make sense of δa(t), we start by a crucial observation. A piecewise continu-
ous function f(t) on [0,+∞), which vanishes outside a given bounded sub-interval is almost
completely determined by all the values∫ ∞

0

g(t)f(t) dt

for g(t) ranging over the family of continuous functions on [0,∞). The precise meaning of the
previous assertion is that, if f1(t) and f2(t) are piecewise continuous functions on [0,+∞), both
vanishing outside a given bounded interval, and if∫ ∞

0

g(t)f1(t) dt =

∫ ∞

0

g(t)f2(t) dt

for all continuous g(t) defined for t ≥ 0, then f1(t) = f2(t) for all points t at which both f1 and
f2 are continuous.

Let us now compute the limit of the expression∫ +∞

0

g(t)δa,ε(t) dt

as ε → 0, for g(t) as above. From the definition of δa,ε, we are dealing with

lim
ε→0

1

ε

∫ a+ε

a

g(t) dt .

In order to compute such a limit, let G(t) be an antiderivative of g(t). Then, by the fundamental
theorem of calculus, ∫ a+ε

a

g(t) dt = G(a+ ε)−G(a) ,

and so the limit in question becomes

lim
ε→0

G(a+ ε)−G(a)

ε
= G′(a) = g(a)

by the the definition of derivative and the fact that G is an antiderivative of g.
We are thus lead to define the mathematical object δa(t) as the operation which, to each

continuous function g(t) defined for t ≥ 0, assigns the number∫ +∞

0

g(t)δa(t) dt = g(a) .

By virtue of the definition, it follows that the Laplace transform of the Dirac delta function
δa(t) is given by

L{δa(t)} =

∫ +∞

0

e−stδa(t) dt = e−as (5.4.1)

for all s.
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5.4.2. Delta function inputs. Notice that, even though δa(t) is formally not a function
on [0,+∞), it is clear from the discussion above that the equality

δa(t) = δ0(t− a)

holds, when appropriately interpreted. We adopt the notation δ(t) for δ0(t).

Example 5.4.1. We examine a mechanical system described by the initial value prioblem

x′′(t) + 4x′(t)− 5x(t) = δ(t− π) + δ(t− 2π) , x(0) = 0 , x′(0) = 2 .

Applying the Laplace transform on both sides of the differential equation, we obtain

s(sX(s)− x(0))− x′(0) + 4(sX(s)− x(0))− 5X(s) = L{δπ(t)}+ L{δ2π(t)} ,

which, using the initial conditions and (5.4.1), becomes

s2X(s)− 2 + 4sX(s)− 5X(s) = e−πs + e−2πs ,

that is,

X(s) =
e−πs + e−2πs + 2

s2 + 4s− 5
.

We apply partial fraction decomposition to get

1

s2 + 4s− 5
=

1

6

Å
1

s− 1
− 1

s− 5

ã
,

which yields

L−1

ß
1

s2 + 4s− 5

™
=

1

6
(e−t − e−5t) .

We conclude that

x(t) =
1

3
(e−t − e−5t) +

1

6

Å
u(t− π)(e−(t−π) − e−5(t−π)) + u(t− 2π)(e−(t−2π) − e−5(t−2π))

ã
.



CHAPTER 6

Fourier series methods and partial differential equations

6.1. Periodic functions and trigonometric series

Consider the differential equation

x′′(t) + ω2
0x(t) = f(t) .

We have seen in Chapter ?? how to find its general solution, by the method of undetermined
coefficients, when f(t) is a linear combination of trigonometric functions of the form

f(t) = A cosωt+B sinωt , A,B ∈ R. (6.1.1)

Several physically relevant external forces are periodic functions, namely they satisfy

f(t+ p) = f(t)

for some p > 0. The superposition principle for nonhomogeneous equations allows to treat
cases where f(t) is, more generally with respect to (6.1.1), a linear combination

N∑
n=1

(
an cosnωt+ bn sinnωt

)
.

The French mathematician Joseph Fourier, in his epoch-making treatise “Théorie Analytique
de la Chaleur” (1822), asserted that every 2π-periodic function can be written as an infinite
series

a0
2

+
∞∑
n=1

(
an cosnt+ bn sinnt

)
.

We have the formulas ∫ π

−π

cosmt cosnt =

®
0 if m ̸= n

π if m = n
,

∫ π

−π

sinmt sinnt =

®
0 if m ̸= n

π if m = n
,∫ π

−π

cosmt sinnt = 0 ,

for all integers m,n ≥ 0.
Suppose

f(t) =
a0
2

+
∞∑
n=1

(
an cosnt+ bn sinnt

)
.

Then ∫ π

−π

f(t) dt = πa0 +
∞∑
n=1

an

∫ π

−π

cosnt+ bn

∫ π

−π

sinnt dt = πa0 ,

whence

a0 =
1

π

∫ π

−π

f(t) dt .

57
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We proceed with∫ π

−π

f(t) cos t dt =
a0
2

∫ π

−π

cos t dt+
∞∑
n=1

an

∫ π

−π

cosnt cos t dt+ bn

∫ π

−π

sinnt cos t dt = πa1 ,

whence

a1 =
1

π

∫ π

−π

f(t) cos t dt .

Similarly∫ π

−π

f(t) sin t dt =
a0
2

∫ π

−π

sin t dt+
∞∑
n=1

an

∫ π

−π

cosnt sin t dt+ bn

∫ π

−π

sinnt sin t dt = πb1 ,

from which we deduce

b1 =
1

π

∫ π

−π

f(t) sin t dt .

Definition 6.1.1 (Fourier series of a piecewise continuous function). Let f(t) be a piecewise
continuous function, defined for all real values of t and periodic with period 2π. The Fourier
series of f(t) is defined as the infinite series

a0
2

+
∞∑
n=1

(
an cosnt+ bn sinnt

)
where the coefficients an and bn are given by

an =
1

π

∫ π

−π

f(t) cosnt dt

for n ≥ 0 and

bn =
1

π

∫ π

−π

f(t) sinnt dt

for n ≥ 1.

6.2. General Fourier series and convergence

6.3. Fourier sine and cosine series

Given a piecewise continuous function f(t) defined for 0 < t < L, where L > 0 is a fixed real
number, we define its even and odd extensions as follows. The even period 2L extension of
f is defined as the function

fE(t) =

®
f(t) if 0 < t < L

f(−t) if − L < t < 0

and by the (2L)-periodic condition

f(t+ 2L) = f(t)

for all other values of t. Similarly, the odd period 2L extension of f is defined as the
function

fO(t) =

®
f(t) if 0 < t < L

−f(−t) if − L < t < 0

and by the (2L)-periodic condition

f(t+ 2L) = f(t)

for all other values of t.



6.3. FOURIER SINE AND COSINE SERIES 59

Remark 6.3.1. Notice that the requirements above identify the values of fE(t) and fO(t)
uniquely for all real t which are not integer multiples of L. We adopt the convention of definining
fE(t) and fO(t), at all such values of t, to be, respectively, the averages

fE(t+) + fE(t−)

2
,

fO(t+) + fO(t−)

2

so that we ensure convergence of the Fourier series of fE and fO for all t ∈ R, provided that
f(t) is piecewise smooth on (0, L).

The Fourier series of the even extension fE is the Fourier series of an even function, and as
such takes the form

a0
2

+
∞∑
n=1

an cos

Å
nπt

L

ã
with

an =
2

L

∫ L

0

fE(t) cos

Å
nπt

L

ã
dt =

2

L

∫ L

0

f(t) cos

Å
nπt

L

ã
dt .

Analogously, the Fourier series of the odd extension fO is the Fourier series of an odd function,
and as such takes the form

∞∑
n=1

bn sin

Å
nπt

L

ã
with

bn =
2

L

∫ L

0

fO(t) sin

Å
nπt

L

ã
dt =

2

L

∫ L

0

f(t) sin

Å
nπt

L

ã
dt .

The previous two Fourier series are defined as the Fourier cosine and Fourier sine series of
f(t), respectively.

Definition 6.3.2 (Fourier cosine and sine series). Let f(t) be a piecewise continuous func-
tion defined for 0 < t < L, where L > 0 is a given real number.

We define the Fourier cosine series of f(t) as the infinite series

a0
2

+
∞∑
n=1

an cos

Å
nπt

L

ã
where

an =
2

L

∫ L

0

f(t) cos

Å
nπt

L

ã
dt

for all integers n ≥ 0.
We define the Fourier sine series of f(t) as the infinite series

∞∑
n=1

bn sin

Å
nπt

L

ã
where

bn =
2

L

∫ L

0

f(t) sin

Å
nπt

L

ã
dt

for all integers n ≥ 0.

Corollary 6.3.3. Suppose f(t) is a piecewise smooth function defined for 0 < t < L,
where L > 0 is a given real number. Then both the Fourier cosine series and the Fourier sine
series of f(t) converge to

f(t+) + f(t−)

2
for all 0 < t < L.
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6.4. Heat conduction and separation of variables

The first prominent example of partial differential equation we shall investigate is the one-
dimensional heat equation

ut = kuxx (6.4.1)

where k > 0 is a fixed real number. It describes the temperature u(x, t) of a heated rod at
position 0 < x < L, where L > 0 is a fixed real number representing the length of the rod, and
at time t > 0. The constant k > 0 is known as the thermal diffusivity of the rod material. As
in the context of ordinary differential equations, we associate further pieces of data to a partial
differential equation which ensure uniqueness of solutions. In the realm of partial differential
equations, such additional conditions are routinely presented in the form of boundary value
problems. In the case of the heat equation, this amounts to specify the initial (namely, at
time t = 0) temperature profile

u(x, 0) = f(x)

of the rod, where we shall always assume that f(x) is a piecewise smooth function defined for
0 < x < L. Also, we specify some boundary conditions of the rod temperature at x = 0 and
x = L, which are to be valid for all times t ≥ 0. These come in two sorts:

(1) (zero endpoint temperatures) we impose

u(0, t) = u(L, t) = 0 for all t ≥ 0 ;

(2) (insulated ends) we impose

ux(0, t) = ux(L, t) = 0 for all t ≥ 0 .

In order to find solutions to our boundary value problems, we proceed via the method of
separation of variables, which consists in looking for solutions of the form

u(x, t) = X(x)T (t) (6.4.2)

where X(x) is a twice-differentiable function of one real variable x and T (t) is a differentiable
function of one real variable t. Plugging (6.4.2) into (6.4.1), we get the equation

X(x)T ′(t) = kX ′′(x)T (t) .

Assuming for the time being that T (t) ̸= 0 and X(x) ̸= 0, we can divide both sides of the last
displayed equation by X(x)T (t), and thus get

T ′(t)

T (t)
= k

X ′′(x)

X(x)
.

It follows that there must exist a real number λ such that

T ′(t)

kT (t)
= −λ and

X ′′(x)

X(x)
= −λ ,

that is, the functions X(x) and T (t) must satisfy the ordinary differential equations

X ′′(x) + λX(x) = 0

T ′(t) + λkT (t) = 0 .

6.4.1. Zero endpoint temperatures. We start with the first equation. To begin with,
notice that the function X(x) must satisfy the endpoint value problem

X ′′(x) + λX(x) = 0 , X(0) = X(L) = 0 ; (6.4.3)

indeed, the endpoint conditions for X are derived from the endpoints conditions

0 = u(0, t) = X(0)T (t) = X(L)T (t) = u(L, t)
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for u(x, t), since we are seeking non-trivial solutions T (t) ̸= 0. Now (6.4.3) is an eigenvalue
problem we have already discussed in §??, where we found that the problem admits a non-trivial
(meaning, non identically vanishing) solution X(x) if and only if λ is of the form

λn =
π2

L2
n2 , n ≥ 1 an integer, (6.4.4)

with an associated eigenfunction of the form

Xn(x) = sin

Å
nπx

L

ã
.

We now proceed with the consideration of the ODE for T (t), with λ being one of the λn’s
found in (6.4.4). Either via separation of variables, or via the direct solution method for linear
first-order ODEs, we see that a non-trivial solution to

T ′(t) + λnkT (t) = 0

is given by

Tn(t) = e−λnkt .

Hence, we have shown that the function

un(x, t) = Xn(x)Tn(t) = e−π2n2kt/L2

sin

Å
nπx

L

ã
solves the problem

ut = kuxx , u(0, t) = u(L, t) = 0 .

It remains to ensure the initial condition

u(x, 0) = f(x) ,

which is not satisfied by un(x, t) unless we are in the very special case

f(x) = sin

Å
nπx

L

ã
.

We now resort to the principle of superposition of solutions, which we already enunciated
several times in the context of ordinary differential equations, and a version of which is also
valid for linear partial differential equations such as the heat equation. We formulate it in the
the specific context of the heat equation.

Theorem 6.4.1 (Superposition principle). Consider the boundary value problem

ut = kuxx , u(0, t) = u(L, t) = 0 , u(x, 0) = f(x) (6.4.5)

where

f(x) =
∞∑
n=1

cnfn(x)

for some functions fn(x) and some real numbers cn, n ≥ 1 an integer. Suppose, for every
n ≥ 1, that un(x, t) is a solution to the boundary value problem

ut = kuxx , u(0, t) = u(L, t) = 0 , u(x, 0) = fn(x) .

Then the infinite series

u(x, t) =
∞∑
n=1

cnun(x, t)

is a solution of the boundary value problem (6.4.5), provided it converges for all relevant pairs
(x, t) and it satisfies the necessary regularity assumptions.
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Remark 6.4.2. An entirely analogous statement is valid for the case of insulated ends,
where the condiiton

u(0, t) = u(L, t) = 0

is replaced by the condition
ux(0, t) = ux(L, t) = 0 .

In light of the previous theorem, in order to solve the BVP

ut = kuxx , u(x, 0) = f(x) , u(0, t) = u(L, t) = 0 ,

we only need to decompose f(x) according to its Fourier sine series

f(x) =
∞∑
n=1

bn sin

Å
nπx

L

ã
with

bn =
2

L

∫ L

0

f(x) sin

Å
nπx

L

ã
dx

for all n ≥ 1. From the previous discussion, in particular from the superposition principle, we
then know that

u(x, t) =
∞∑
n=1

bne
−π2n2kt/L2

sin

Å
nπx

L

ã
is the sought after solution.

Theorem 6.4.3 (Heat equation with zero endpoint temperature). The unique solution to
the boundary value problem

ut = kuxx , u(x, 0) = f(x) , u(0, t) = u(L, t)

is given by

u(x, t) =
∞∑
n=1

bne
−π2n2kt/L2

sin

Å
nπx

L

ã
where

∞∑
n=1

bn sin

Å
nπx

L

ã
is the Fourier sine series of f(x).

Example 6.4.4. Let’s find the unique solution to the boundary value problem

ut = 2uxx , u(x, 0) = 5 sin(πx)− 1

5
sin(3πx) , u(0, t) = u(1, t) = 0 .
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