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CHAPTER 1

First-order differential equations

The Italian physicist Galileo Galilei famously said that the world is written in the language
of mathematics. As it stands, this assertion is certainly questionable from a philosophical
standpoint; however it is not controversial that the universe is read in mathematical language,
which is to say, the physical laws governing it are formulated and studied in mathematical
terms.

Whilst elementary algebra, in the form of standard equations, is sufficient to analyze most
static problems, it is ill-suited to the understanding of dynamical phenomena, involving phys-
ical quantities which change over time. For those, the concept of differentiation, one of the
foundational notions of calculus, naturally enters the picture, as it formalizes mathematically
the intuition of infinitesimal rate of change of a certain quantity. An overwhelming majority
of the laws of nature, such as Newton’s law of gravitation or Maxwell’s equations for electro-
magnetism, express the instantaneous rate of change of a given quantity of interest in terms of
other variables of the problem, which might be, for instance, the time variable and the physical
quantity under investigation itself. We shall see a wealth of incarnations of this general formu-
lation, starting already with §1.1; in mathematical language, laws of this kind are expressed
via differential equations, the core topic of this course.

1.1. Differential equations and mathematical models

1.1.1. Some introductory examples. As already alluded to in the introduction to this
chapter, a differential equation is a mathematical identity relating a certain unknown function
to its derivatives of higher order. For the most part of this course, we shall be interested in
functions of a single real variable; differential equations involving those are called ordinary, as
opposed to partial differential equations, the subject of the last chapter of this course, where
the unknown is a function of several real variables and the equation relates such function to its
partial derivatives of higher order.

Before giving the abstract definition of an ordinary differential equation, let us have a look
at a few motivating examples.

Example 1.1.1. The equation

x′(t) = 2x(t)− t

involves an unknown function x(t), of the independent variable t, and its derivative x′(t). We
shall classify this example as a first-order differential equation.

Example 1.1.2. The equation

y′′(t) + y′(t)− 3y(t) = cos t

features an unknown function y(t) together with its first two derivatives y′(t), y′′(t). We shall
refer to it as a second-order differential equation.

Example 1.1.3. Consider the equation

y′(x) = 3x2y(x) , (1.1.1)
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6 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

which involves an unknown function y(x) and its derivative y′(x). Let us verify that the one-
parameter family1 of functions

y(x) = Cex
3

, (1.1.2)

where C is a constant allowed to range over all real numbers, gives an infinite set of solutions
to the equation, namely of functions verifying the identity in (1.1.1). To this end, let’s compute
the derivative y′(x) of y(x) using the familiar chain rule:

y′(x) = Cex
3

(3x2) .

We immediately realize that the latter expression equals precisely 3x2y(x), as desired.

Notice that, in the last example, we encountered infinitely many different functions satisfy-
ing the given equation. We shall see that this is a typical feature of differential equations2. For
the moment, we might ask ourselves: are the functions in (1.1.2) the only possible solutions
to (1.1.2), or are there any others? over the course of this chapter, we shall learn a variety
of methods to explicitly solve differential equations such as the one under consideration here,
which will enable us to conclude that, in this specific example, there are no solutions other
than the ones in (1.1.2).

1.1.2. Mathematical modelling through differential equations. We shall now present
two introductory examples of mathematical modeling of a physical phenomenon governed by a
law which lends itself to a formulation via a differential equation.

Example 1.1.4 (Newton’s law of cooling). In thermodynamics, Newton’s law of cooling
describes the time evolution of the temperature of an object in terms of the temperature of
the surrounding environment, such as a hot rock immersed in a glass of cold water. If the
surrounding medium is substantially larger than the object under scrutiny, it is physically rea-
sonable to assume that the ambient temperature remains constant in time, namely is unaltered
by the interaction with the smaller object. Newton’s law of cooling then asserts that the rate
of change of the temperature of the object is directly proportional to the difference between
the temperature of the object and the one of the ambient space.

Let us model this phenomenon mathematically, specifically let us phrase Newton’s law in
mathematical terms. Let A denote the temperature of the environment. If T (t) indicates the
temperature of the object at time t, then its rate of change is expressed, as is well known from
earlier Calculus courses, by the derivative T ′(t). We may thus formulate Newton’s law as the
differential equation

T ′(t) = −k(T (t)− A)

for a certain proportionality constant k > 0 (which is part of the physical data of the problem).
The reason for the sign of the proportionality constant, which is negative (beware the minus
sign in front of the k), is of physical nature: it is well known from experimental evidence
that the temperature of the object will increase if it is lower than the one of the environment
(T (t) < A implies T ′(t) > 0), and decrease if it is higher (T (t) > A implies T ′(t) < 0).

Example 1.1.5 (Torricelli’s law). In fluid dynamics, Torricelli’s law states that the instan-
taneous rate of change of the volume of a liquid inside a draining tank is proportional to the
square root of the depth of the liquid. Let us model Torricelli’s law by means of an ODE,
assuming for simplicity that the draining tank has cylindrical shape with cross-sectional area
A > 0. Let V (t) and y(t) denote, respectively, the volume and the depth of the liquid at time
t. Then the law asserts that

V ′(t) = −k
»
y(t) (1.1.3)

1The reason for the terminology is obvious: the given family of functions is described by a single real
parameter C.

2By way of contrast, usual algebraic equations such as polynomial equations in one variable have at most
finitely many solutions.
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Figure 1.1. Here the red lines are tangent lines to the graph of g, and the
dashed blue line represents a potential guess for the graph itself.

for some positive constant k > 0 (the amount of water in the tank is decreasing, thus V ′(t)
must be negative).

At first sight, the differential relation (1.1.3) doesn’t look like the differential equations we
have encountered so far, in that there appear to be two unknown functions, namely V (t) and
y(t). However, since the shape of the tank is cylindrical, there is a clear additional relation
between the volume and the depth of the liquid, which is V (t) = Ay(t). Since A is constant in
time, (1.1.3) translates into

Ay′(t) = −k
»

y(t) ,

which is now a differential equation of the single unknown function y(t).

We now present an example where a differential equation models a problem of geometric
nature.

Example 1.1.6. Let g(x) be a real-valued function of a real variable. Suppose g satisfies
the following geometric condition: for every point (x, y) in the graph3 of g, the tangent line
to the graph of g at (x, y) passes through the point (−y, x). Figure 1.1 illustrates graphically
the geometric requirement we are imposing on the graph. We shall see how to translate this
geometric condition on the graph of g into a differential equation which is satisfied, that is,
solved by g.

Fix a point (x, y) in the graph of g; this means that y = g(x). We begin by finding the
equation for the tangent line to the graph of g at the point (x, g(x)), after which we are going
to impose that such line passes through (−y, x) = (−g(x), x). By definition, the sought after

3Recall that the graph of a function h(x) is the set of pairs (x, h(x)), which are pictorially identified with
points in the xy-plane, where x varies over the domain of definition of h.
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tangent line contains the point (x, g(x)) and has slope given by the derivative g′(x) at the point
x: its equation, using new variables s and t to avoid confusion, is thus

t(s) = g′(x)(s− x) + g(x) , (1.1.4)

where we emphasize once again that x is fixed and s is the variable in the equation. If we
impose now the condition that (−g(x), x) lies on such tangent line, we obtain from (1.1.4) the
relation

x = g′(x)(−g(x)− x) + g(x) ,

which is a bona fide ordinary differential equation, of the first order, satisfied by g(x). Solving
such an equation allows thus to determine all possible differentiable functions whose graph
satisfies the geometric property phrased at the beginning.

1.1.3. A general framework for ordinary differential equations. We are now ready
to give the formal definition of ordinary differential equation.

Definition 1.1.7 (Ordinary differential equation). An ordinary differential equation
(henceforth routinely abbreviated ODE) is an equation of the form

F (x, y(x), y′(x), . . . , y(n)(x)) = 0 (1.1.5)

where n ≥ 1 is an integer, F is a real-valued continuous function of n + 2 real variables, and
y(x) is the unknown function of the equation, which appears in it together with its derivatives
y′(x), y′′(x), . . . , y(n)(x) and with the independent variable x.

The integer n is called the order of the ODE (1.1.5).

We shall say that (1.1.5) is an n-th order ODE; n corresponds to the highest order derivative
appearing in the given ODE.

Example 1.1.8. To digest the abstract definition, let us place the examples encountered so
far within the general framework described by Definition 1.1.7.

(1) The equation

y′(x) = 2y(x)− x

which, upon renaming the unknown function and the independent variable, is precisely
the one treated in Example 1.1.1, takes the form (1.1.5) for n = 1 and F (t1, t2, t3) =
−t1+2t2−t3, a real-valued function of three real variables t1, t2, t3. Indeed, the equation
F (x, y(x), y′(x)) = 0 amounts precisely to

0 = −x+ 2y(x)− y′(x) , that is, y′(x) = 2y(x)− x .

Since the integer n is equal to 1 in this case, we have an example of a first-order
differential equation.

(2) The equation

y′′(x) + y′(x)− 3y(x) = cos x ,

already discussed in Example 1.1.2, takes the form (1.1.5) for n = 2 and F (t1, t2, t3, t4) =
cos t1 +3t2 − t3 − t4; to check this, simply plug the variables (x, y(x), y′(x), y′′(x)) into
(t1, t2, t3, t4), so as to obtain

0 = cos x+ 3y(x)− y′(x)− y′′(x) , that is, y′′(x) + y′(x)− 3y(x) = cos x .

As n = 2, this is an example of a second-order ODE.
(3) Newton’s law of cooling (Example 1.1.4) is expressed by the differential equation

y′(x) = −k(y(x)− A)

for given constants k and A. It is straightforward to verify, as in the two examples
above, that we obtain the equation in the form (1.1.5) for n = 1 and F (t1, t2, t3) =
k(t2 − A) + t3; it is a first-order ODE.
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(4) Torricelli’s law (Example 1.1.5) is expressed by the differential equation

Ay′(x) = −k
»

y(x)

for given constants k and A. The equation takes the form (1.1.5) for n = 1 and
F (t1, t2, t3) = k

√
t2 + At3; it is a first-order ODE.

We now formalize the rather intuitive notion of solution of an ODE. By an open interval in
R we mean any set of real numbers of the form (a, b), thus with the boundary points a and b
excluded, where a is a real number or a = −∞ and b > a is a real number, potentially b = +∞.

Definition 1.1.9 (Solution of an ODE). A solution of an ODE

F (x, y(x), y′(x), . . . , y(n)(x)) = 0

is a real-valued function u(x) of a single real variable x, defined on some open interval I ⊂ R,
which is n-times continuously differentiable4 on I and satisfies the equality

F (x, u(x), . . . , u(n)(x)) = 0 for every x ∈ I.

Example 1.1.10. Consider the function

u(x) =
1

C − x
, (1.1.6)

where C is an arbitrary real constant. Since

u′(x) =
1

(C − x)2
,

we deduce that u(x) is a solution to the differential equation

y′(x) = y2(x) .

It is defined over two separate open intervals, namely (−∞, C) and (C,+∞). As C varies in
R, (1.1.6) describes a one-parameter family of solutions to the given first-order ODE.

Example 1.1.11. Let us verify that the function

u(x) = xe−x

is a solution, defined over the whole real line, of the second-order ODE

y′′(x) + 2y′(x) + y(x) = 0 .

We compute first

u′(x) = e−x − xe−x = (1− x)e−x

via the product rule for derivatives, and similarly

u′′(x) = −e−x − (1− x)e−x = e−x(x− 2) .

Therefore, we obtain

u′′(x) + 2u′(x) + u(x) = e−x(x− 2) + e−x(2− 2x) + xe−x = e−x(x− 2 + 2− 2x+ x) = 0 ,

which shows that u(x) = xe−x solves the given ODE.
Observe that the function

v(x) = e−x

is also a solution: indeed, we have v′(x) = −e−x and v′′(x) = e−x, so that

v′′(x) + 2v′(x) + v(x) = e−x − 2e−x + e−x = 0 ,

as desired.

4That is, it can be differentiated n times, and its n-th order derivative u(n)(x) is continuous.
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In general, an ordinary differential equation may fail to admit any solution. For instance,
the first-order ODE

y′2(x) + y2(x) = −1

does not admit any solution. Indeed, the square of any real number is nonnegative, whence

u′2(x) + u2(x) ≥ 0

for any differentiable function u(x).
It may also be the case that an ODE admits just one solution. This happens, for instance,

of the second-order ODE
y′′2(x) + y2(x) = 0 ,

which is only solved by the constant function u = 0.
The last two are, however, rather pathological examples; as we will amply discuss in the

sequel, it is standard for an n-th order ODE to admit an n-parameter family of solutions,
namely a collection of solutions which is described by n distinct real parameters.

Example 1.1.12. Let us go back to Example 1.1.11, i.e., to the second-order differential
equation

y′′(x) + 2y′(x) + y(x) = 0 . (1.1.7)

We have verified that the two functions

u1(x) = e−x , u2(x) = xe−x

are solutions to the equation. Linearity of derivatives allows us to deduce that any function of
the form

u(x) = C1u1(x) + C2u2(x) , (1.1.8)

where C1 and C2 are distinct real constants, is a solution: indeed, we compute

u′′(x) + 2u′(x) + u(x) = (C1u1(x) + C2u2(x))
′′ + 2(C1u1(x) + C2u2(x))

′ + C1u1(x) + C2u2(x)

= C1u
′′
1(x) + C2u

′′
2(x) + 2(C1u

′
1(x) + C2u

′
2(x)) + C1u1(x) + C2u2(x) ;

rearranging terms appropriately, we obtain

u′′(x) + 2u′(x) + u(x) = C1(u
′′
1(x) + 2u′

1(x) + u1(x)) + C2(u
′′
2(x) + 2u′

2(x) + u2(x))

= C1 · 0 + C2 · 0 = 0 ,

as claimed.
We have thus found a two-parameter family of solutions to the second-order ODE (1.1.7);

we shall develop solving strategies for such kind of equations which will enables us to ascertain
that there are no other solutions, so that (1.1.8) completely describes the set of solutions to
the given ODE.

1.1.4. Equilibrium solutions. One of the main goals of this course is to learn to analy-
size properties of solutions to differential equations. The most basic solutions to conceive are
constant solutions.

Definition 1.1.13 (Equilibrium solution). A solution u(x) of an ordinary differential equa-
tion

F (x, y(x), y′(x), . . . , y(n)(x)) = 0 ,

defined over a certain open interval I ⊂ R, is called an equilibrium solution, or simply an
equilibrium, if there is a real number C such that u(x) = C for all x ∈ I.

It shall be important, whenever we attempt to study an ODE, to first single out its equilib-
rium solutions, if there are any. This will often be a basic step before implementing appropriate
methods to find all other solutions.

Suppose the constant function u(x) = C is a solution to the ODE

F (x, y(x), . . . , y(n)(x)) = 0 ;
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by definition, this means that

0 = F (x, u(x), u′(x), . . . , u(n)(x)) = F (x,C, 0, . . . , 0) ,

the last equality holding since all derivatives of a constant function vanish identically. Therefore,
the real number C is a solution to the functional equation

F (x,C, 0, . . . , 0) = 0 ,

meaning that F (x,C, 0, . . . , 0) = 0 for all x in the domain of definition of F . Conversely, it is
clear that if C ∈ R solves the last displayed equation, then the constant function u(x) = C is
a solution to the given ODE.

Example 1.1.14. Let’s determine all equilibrium solutions of the first-order ODE

y′(x) = (M − y(x))(y2(x)− 3y(x) + 2) ,

where M is a given real number. A constant function u(x) = C solves the equation if and only
if

0 = u′(x) = (M − C)(C2 − 3C + 2) = (M − C)(C − 1)(C − 2) ,

which is an algebraic equation in the variable C with solutions C = 1, C = 2 and C = M .
Therefore the equilibrium solutions of the ODE at hand are

u(x) = 1 , u(x) = 2 , u(x) = M .

Example 1.1.15. Consider the second-order ODE

y′′(x)− y′(x) + 3ky(x) = 0 ,

where k ∈ R is given. Let’s determine the equilibrium solutions: a constant function u(x) = C
solves the ODE if and only if

0 = u′′(x)− u′(x) + 3ku(x) = 0 + 0 + 3kC = 3kC .

We have thus two distinct regimes according to the value of k: if k ̸= 0, then the last displayed
algebraic equation is only solved for C = 0, which produces the unique equilibrium solution

u(x) = 0 .

On the other hand, if k = 0, then the equation 0 = 3kC is always verified, no matter the value
of C; in this case, we thus have a one-parameter family of equilibrium solutions to the given
ODE,

u(x) = C , C ∈ R.

Example 1.1.16. Consider the first-order ODE

y′(x) = y(x) cosx− ex .

Let u(x) = C be a constant function: can it be a solution to the given equation? For it to be
the case, we must have

0 = u′(x) = u(x) cosx− ex = C cosx− ex ,

for all real values of x. It is clear that there exists no real number C for which this is verified,
since C cosx is a bounded function, whereas ex is unbounded. Thus, the given ODE has no
equilibrium solutions.
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1.1.5. Initial value problems. In applications, differential equations customarily appear
in conjunction with initial conditions : in the study of the time-evolution a certain physical
quantity y(t), we typically know its value y0 at a given moment in time t0, and we understand
the physical law underlying its evolution, expressed by a differential equation for y(t). Assuming
such knowledge, we would like to determine the future evolution of y(t) completely, namely all
the values y(t) for all t > t0. A problem of such nature is known as initial value problem.

Definition 1.1.17 (Initial value problem). An initial value problem (IVP in abridged
form) is a pair ®

F (x, y(x), . . . , y(n)(x)) = 0

y(x0) = y0 , y
′(x0) = y1 , . . . , y

(n−1)(x0) = yn−1

(1.1.9)

consisting of an ordinary differential equation

F (x, y(x), . . . , y(n)(x)) = 0 (1.1.10)

and a set of initial conditions

y(x0) = y0 , y
′(x0) = y1 , . . . , y

(n−1)(x0) = yn−1

where x0, y0, . . . , yn−1 are real numbers.
A solution of the IVP (1.1.9) is a solution u(x) of the ODE (1.1.10) which is defined on

an interval I containing the point x0, and which satisfies the conditions

u(x0) = y0 , u
′(x0) = y1 , . . . , u

(n−1)(x0) = yn−1 .

Example 1.1.18. Let us find a solution to the IVP®
y′(x) = y2(x)

y(1) = 1

taking advantage of the family of solutions found in Example 1.1.10. From the latter, we know
that each function

u(x) =
1

C − x
,

for C ∈ R, is a solution to the ODE in the given initial value problem. We now impose the
initial condition u(1) = 1 prescribed by the IVP, and obtain the algebraic equation

1 = u(1) =
1

C − 1
,

from which we readily get C = 2. Therefore, the function

u(x) =
1

2− x

is a solution to the given IVP.
It is now natural to ask: are there any more solutions? Certainly none of the form 1/(C−x)

for C ̸= 2, since we obtained C = 2 precisely by dictating the initial condition. In principle,
there might however be other solutions to the ODE y′(x) = y2(x) which are not of the form
u(x) = 1/(C − x). In later sections of this chapter we will prove that there are, as a matter of
fact, no other solutions.

Example 1.1.19. Leveraging the family of solutions found in Example 1.1.12, let us find a
solution to the IVP ®

y′′(x) + 2y′(x) + y(x) = 0

y(0) = 0 , y′(0) = −1
.

A general solution to the given DE is, as we already verified,

u(x) = C1e
−x + C2xe

−x (1.1.11)

for real parameters C1, C2. We now impose the two initial conditions:

0 = u(0) = C1 · 1 + C2 · 0 = C1 ,
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so that we find C1 = 0 and u(x) = C2xe
−x for some C2 ∈ R, which we determine imposing the

second initial condition. We compute u′(x) = C2(e
−x − xe−x), and thus

−1 = u′(0) = C2(1− 0) = C2 .

Therefore, the unique function u(x) in the family (1.1.11) which solves the original IVP is

u(x) = −xe−x .

A major achievement of the general mathematical theory of ordinary differential equations
is that, under rather mild assumptions, initial value problems always admit a unique solution
defined for all values of the independent variable x which are sufficiently close to the initial
value x0. Thus, while a n-th order ODE usually admits an n-parameter family of solutions, the
additional datum of n initial conditions in an IVP forces uniqueness. In this course, we shall
not be concerned with the abstract theory of ODEs, and will rather verify the aforementioned
uniqueness principle in a wide variety of specific examples.

1.1.6. Ordinary differential equations in normal form. Throughout this course, we
shall exclusively deal with ordinary differential equations expressed in normal form, namely
those expressing the highest-order derivative of the unknown function as a function of all the
remaining derivatives: more precisely, an n-th order ODE in normal form appears as

y(n)(x) = F (x, y(x), . . . , y(n−1)(x))

for a certain continuous real-valued function F of n+ 1 real variables.

Example 1.1.20. The first-order ODE

y′(x) = 2x log y(x)

is in normal form, whereas the first-order ODE

y′2(x) + y2(x) = x4

is not in normal form. Notice that trying to solve the latter for the highest-order derivative
y′(x) would produce the ambiguity

y′(x) = ±
»
x4 − y2(x)

in the choice of square root.

Example 1.1.21. The second-order ODE

t3x′′(t)− t2x(t) = t− sin t

is not in normal form, while the second-order ODE

x′′(t) = −tx′(t)− x(t) + 1

is in normal form.

For the sake of brevity, we adopt the following terminological convention.

Convention. From now on, unless explicitly mentioned, a differential equation without
further specification is meant to be an ordinary differential equation, and will routinely be
abbreviated as DE.
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1.2. Integrals as general and particular solutions

We now begin a systematic study of first-order differential equations in normal form, that
is, equations of the form

y′(x) = f(x, y(x))

in the unknown y(x), where f is a (given) function of two real-variables. This section is devoted
to the analysis of the most elementary instances of such equations, namely the case where the
function f only depends on the independent variable x. The resulting form of the equation is
thus

y′(x) = f(x) . (1.2.1)

Direct integration yields all solutions to the last-displayed equation. Indeed, here we have a
fixed, known continuous function f(x), and we look for all continuously differentiable functions
y(x) whose derivative is given by the function f . According to the terminology introduced in
Calculus 2, y(x) solves the DE in (1.2.1) if and only if y(x) is an anti-derivative of the function
f(x). Anti-derivatives are given by indefinite integrals, whence y(x) is a solution if and only if

y(x) =

∫
f(x) dx = g(x) + C (1.2.2)

where g(x) is a choice of an anti-derivative of f(x), and C is a real constant. What we just
described in (1.2.2) is routinely referred to as a general solution of the DE in (1.2.1), namely
a collection of solutions parametrized, in this case, by the constant C. For each fixed C ∈ R,
we obtain a particular solution of the equation in (1.2.1); thus a general solution is a family
of particular solutions. In this case, we are dealing with a one-parameter family of solutions,
as shall customarily be the case for first-order differential equations.

If a general solution to a given equation comprises all possible solutions, then we shall speak
of the general solution of the equation. In the present case, (1.2.2) provides the general
solution to (1.2.1); indeed, if g(x) is a fixed anti-derivative of f(x) and u(x) is any solution
to (1.2.1), namely satisfies u′(x) = f(x), then a well known theorem of calculus tells us that u
and g must differ by a constant, for they have the same derivative. Hence, u(x) = g(x) +C for
some C ∈ R and thus u belongs to the family of functions described in (1.2.2).

Recall that an anti-derivative g(x) of f(x) is given by any definite integral of the form

g(x) =

∫ x

x0

f(t) dt

where x0 is a real number in a given open interval on which f is defined; this is indeed the
content of the fundamental theorem of calculus.

Initial conditions enable to specialize a general solution to a particular solution. Suppose
given an IVP ®

y′(x) = f(x)

y(x0) = y0
(1.2.3)

where the differential equation is of the kind we are studying in this section. We known from
the discussion above that a solution to the DE in (1.2.3) must take the form

y(x) = g(x) + C

where g is a fixed anti-derivative of f and C is a real number. Imposing the initial condition
y(x0) = y0 yields

y0 = y(x0) = g(x0) + C ,

from which we derive

C = y0 − g(x0) .

Therefore, we have shown that the IVP in (1.2.3) admits a unique solution, which is given by

y(x) = g(x) + y0 − g(x0)
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for any fixed anti-derivative g(x) of f(x). If, for instance, we choose g(x) to be the definite
integral

g(x) =

∫ x

x0

f(t) dt ,

then g(x0) = 0 and thus the unique solution can be expressed as

y(x) = y0 +

∫ x

x0

f(t) dt .

We summarize the results obtained so far in this section in the following theorem.

Theorem 1.2.1. Let f(x) be a continuous function defined on an open interval I = (a, b) ⊂
R, and consider the first-order differential equation

y′(x) = f(x) .

Let g(x) be an anti-derivative of f(x) on I. Then, a continuously differentiable function u(x),
defined on I, is a solution of the given differential equation if and only if

u(x) = g(x) + C

for some C ∈ R.
Furthermore, if x0 ∈ I and y0 ∈ R, the initial value problem®

y′(x) = f(x)

y(x0) = y0

admits a unique solution u(x) defined on I, which is given by

u(x) = y0 +

∫ x

x0

f(t) dt .

We now familiarize ourselves with the method by working out a few examples.

Example 1.2.2. Consider the IVP®
y′(x) = x+ 4

y(1) = 3
.

We first find the general solution to

y′(x) = x+ 4

by means of indefinite integrals:

y(x) =

∫
x+ 4 dx =

x2

2
+ 4x+ C , C ∈ R.

Now, we impose the condition

y(1) = 3

to find the appropriate value of C; we have

3 = y(1) =
1

2
+ 4 + C ,

from which

C = 3− 1

2
− 4 = −3

2
.

We conclude that the unique solution to the given IVP is the function

y(x) =
x2

2
+ 4x− 3

2
.
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Example 1.2.3. Consider the IVP®
y′(x) = 1√

x+1

y(0) = 2
.

The function f(x) = 1√
x+1

is defined over the open interval {x : x + 1 > 0} = (−1,+∞). The

general solution to

y′(x) =
1√
x+ 1

is given by

y(x) =

∫
1√
x+ 1

dx = 2
√
x+ 1 + C , C ∈ R.

Plugging the initial condition

y(0) = 2

yields

2 = y(0) = 2 + C ,

which gives C = 0. Thus the unique solution to the given IVP is the function

y(x) = 2
√
x+ 1 .

Example 1.2.4. Let’s find the general solution to the first-order DE

y′(x) = ex cosx .

It is given by the indefinite integral

y(x) =

∫
ex cosx dx ,

which we handle through integration by parts (see Appendix A.1): setting u = ex and v′ = cosx,
we get ∫

ex cosx dx = ex sinx−
∫

ex sinx dx .

We now apply again integration by parts to the last displayed integral, with u = ex and
v′ = sinx: ∫

ex sinx dx = −ex cosx+

∫
ex cosx dx .

Combining the two last displayed equations, we obtain∫
ex cosx dx = ex sinx+ ex cosx−

∫
ex cosx dx ,

from which it follows that∫
ex cosx dx =

ex

2
(cosx+ sinx) + C , C ∈ R.

The general solution to the DE y′(x) = ex cosx is thus given by

y(x) =
ex

2
(cosx+ sinx) + C , C ∈ R.

Example 1.2.5. We study the IVP®
y′(x) = 21

4+x2

y(0) = π
.

The general solution to

y′(x) =
21

4 + x2
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is given by

y(x) =

∫
21

4 + x2
dx =

21

4

∫
1

1 + (x/2)2
dx =

21

2
arctan(x/2) + C , C ∈ R.

Imposing the initial condition

y(0) = π

yields

π =
21

2
arctan(0) + C = 0 + C = C ,

whence the unique solution to the given IVP is

y(x) =
21

2
arctan(x/2) + π .

1.2.1. Position, velocity and acceleration. The analysis conducted so far in this section
allows to fully understand the motion of a point mass confined to stay on a line and subject to
external forces which only depend on the time variable, and not on other physical data such as
the position or the velocity of the object.

Recall that the position of the object, which is described by a single real number in view
of the dimensional constraint on the motion, can be recorded via a function x(t) of the time
variable t. The velocity is then given by the first derivative v(t) = x′(t), and the acceleration
by the first derivative of the velocity a(t) = v′(t), or equivalently the second derivative of the
position a(t) = x′′(t).

Newton’s second law of motion asserts that the acceleration which a given object undergoes
is directly proportional to the overall force imparted on it, via a proportionality constant which
is the inverse of the mass m. Its most concise (and best known) formulation is

F = ma . (1.2.4)

Delving deeper into the nature of such equation, we find out that it is a second-order ordinary
differential equation; indeed, the force F is, in many relevant instances, a function of the time
t, of the position x(t) and of the velocity v(t). Thus (1.2.4) amounts to

mx′′(t) = F (t, x(t), x′(t)) (1.2.5)

for a force-function F (t, x(t), x′(t)) which is a given datum of the problem. Now (1.2.5) is
precisely a second-order ODE expressed in normal form.

Given now initial conditions x(t0) = x0, v(t0) = v0 on the position and velocity, the principle
of Newton’s determinism affirms that the evolution of the motion of the object is uniquely
prescribed for all future (and past) times t > t0. Mathematically, this is a consequence of a
general theorem in the theory of ordinary differential equations, which establishes existence
and uniqueness of the solution to an IVP of the form®

mx′′(t) = F (t, x(t), x′(t))

x(t0) = x0 , x
′(t0) = v0

for all functions F satisfying a rather mild regularity condition.
Whilst we are not concerned with a theorem of such general nature in this course, let us

verify this existence and uniqueness principle in action, under the assumption that the force
depends only on the time variable, which places ourselves within the framwork of the present
section. We are thus faced with the IVP®

mx′′(t) = F (t)

x(t0) = x0 , x
′(t0) = v0

for a given function F (t) of one real variable. The first observation is that we can rewrite
the last displayed second-order IVP as two distinct first-order IVPs, one for the unknown v(t)
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and the other for the unknown x(t). Indeed, the previous is equivalent to the two initial value
problems ®

mv′(t) = F (t)

v(t0) = v0
,

®
x′(t) = v(t)

x(t0) = x0

. (1.2.6)

We begin by solving the first one, via the method discussed at the beginning of the present
section. Writing

v′(t) =
1

m
F (t)

for the differential equation, we integrate to obtain the general solution

v(t) =
1

m

∫
F (t) dt = g(t) + C , C ∈ R,

where we may take for instance

g(t) =

∫ t

t0

F (s) ds

as anti-derivative of F . Imposing the initial condition v(t0) = v0 yields

v0 =

∫ t0

t0

F (s) ds+ C = 0 + C = C ,

whence the unique solution to the first IVP in (1.2.6) is given by

v(t) = v0 +

∫ t

t0

F (s) ds .

Now v(t) becomes a known function of t, and our final goal is to solve the second IVP in (1.2.6)
with this given datum. Arguing as above, we deduce that the unique solution the second IVP
is given by

x(t) = x0 +

∫ t

t0

v(s) ds = x0 +

∫ t

t0

v0 ds+

∫ t

t0

∫ s

t0

F (r) dr

= x0 + v0(t− t0) +

∫ t

t0

∫ s

t0

F (r) dr ,

(1.2.7)

which completely determines the position function x(t) for all times t in terms of the initial
conditions x0, v0 and the force function F (t).

Suppose, for instance, that the force F is constant in time: F (t) = F0 for a given real
number F0. Then (1.2.7) boils down to

x(t) = x0 + v0(t− t0) +

∫ t

t0

F0(s− t0) ds = x0 + v0(t− t0) +
F0

2
(t− t0)

2 . (1.2.8)

Therefore, we infer that, in the presence of a constant force, the position function is quadratic
in time. On the other hand, the velocity function

v(t) = x+ (t) = v0 + F0(t− t0) (1.2.9)

is linear in time.

Remark 1.2.6. We recover here the familiar principle, known as Newton’s first law of
motion, that an object under the influence of no external forces persists in his constant-velocity
motion, with a position function thus changing proportionally with time. Indeed, if F0 = 0, we
find from (1.2.9) that

v(t) = v0

and from (1.2.8) that

x(t) = x0 + v0(t− t0) .
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Let us now determine the motion of an object in some concrete cases, starting from knowl-
edge of the initial position and velocity, as well as of the force to which it is subject.

Example 1.2.7 (Vertical motion with gravitational acceleration). Suppose our given point
mass is only subject to the gravitational attraction exerted by the Earth. The resulting force is
proportional, via the object mass, to the gravitational acceleration g (g ∼ 9.8 m/s2), which can
approximately be considered constant in the promixity of the ground: denoting the position
function of the point mass by y(t)5, and assuming the y-axis is oriented upwards, we can thus
write

F = −mg ,

since g > 0 and the force points downwards. For simplicity, and without loss of generality, let
us assume we know initial position and velocity, y0 and v0 respectively, at time t = 0. We first
find the general solution for the velocity function, which satisfies

v′(t) = a(t) =
1

m
F (t) = − 1

m
mg = −g ,

and is therefore given by

v(t) =

∫
a(t) dt =

∫
−g dt = −gt+ C , C ∈ R.

Plugging the initial condition v(0) = v0 we deduce that

v0 = −g · 0 + C = C ,

whence the velocity function is given by

v(t) = v0 − gt .

We proceed to find the position function, which satisfies the IVP®
y′(t) = v(t)

y(0) = y0
;

as general solution we obtain, by integration,

y(t) =

∫
v(t) dt =

∫
v0 − gt dt = v0t−

1

2
gt2 + C , C ∈ R.

Inserting the initial condition y(0) = y0 results into

y0 = v0 · 0−
g

2
· 02 + C = C ,

so that the position function is given by

y(t) = −1

2
gt2 + v0t+ y0 .

If we were to draw the graph of the position as a function of time, we would thus find a parabola6

intercepting the y-axis at the initial position y0.

Example 1.2.8. Suppose an arrow is shot straight upward from the ground with initial
velocity v0 = 20m/s. What is the highest point it reaches in the air?

Observe first that, from the previous example, the position function of the arrow is given
by (notice that y0 = 0 since the arrow is shot from the ground)

y(t) = −1

2
9.8t2 + 20t .

5The notation points to the fact that that the motion is vertical.
6Notice that this has nothing to do with the familiar real-world experience of observing a parabola-like

trajectory when throwing an object in the air with a certain non-zero angle with respect to the vertical direction.
Here we are dealing with a motion which is assumed to occur only in the vertical direction.
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The highest point reached by the arrow corresponds the moment where the velocity vanishes;
since the latter is given by

v(t) = y′(t) = −9.8t+ 20 ,

the time instant t0 where this occurs must verify 0 = −9.8t0 + 20, that is,

t0 = 20/9.8 ∼ 2s .

The position of the arrow at that moment is given by

y(t0) = −1

2
9.8t20 + 20t0 ∼ −2 · 9.8 + 40 ∼ 20m .

Let us expand upon the last example by treating the general case. Suppose we want to find
the highest point reached by an object whose position function is given by

y(t) = −1

2
gt2 + v0t+ y0 ,

where it is physically reasonable to assume that y0, v0 ≥ 0. The velocity function

v(t) = y′(t) = −gt+ v0

vanishes if and only if
t = v0/g ,

which corresponds to the position

yhighest = −1

2
g

Å
v0
g

ã2
+ v0

v0
g

+ y0 = y0 +
v20
g

,

which is consistent with the intuition that, the higher the initial position and the initial velocity
are, the higher is the top of the trajectory followed by the object, with a dependency which is
linear in the initial position and quadratic in the initial velocity.



APPENDIX A

Integration techniques

A.1. Integration by parts
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