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Introduction

The fruitful interaction between ergodic theory and number theory can
be traced back to the early days of the former.

Figure: L. Boltzmann (1844-1906) Figure: G.D. Birkhoff (1884-1944)

What is so unreasonable about this long-standing connection?
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Ergodic vs. number theory

Here is a tentative answer:

I Ergodic theory investigates the long-term behaviour of evolving
systems from a statistical point of view; it provides meaningful
information about the time-evolution of typical initial data.

I Number theory is primarily concerned with questions involving
specific points or subsets of arithmetically defined objects. Even if
some of these questions can be dynamically formulated, ergodic
tools may not be sufficiently powerful to give a full understanding of
the resulting dynamics.

Notwithstanding their inherently different purposes, a wealth of
number-theoretical results have been established via ergodic-theoretical
methods. For many of these, no other proofs are known to date.
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A list of results

Below is a small sample of successful applications of ergodic theory to
long-standing problems in number theory:

1. Furstenberg’s alternative proof of Szemerédi’s theorem (1977);

2. Margulis’ full proof of the Oppenheim conjecture, on density of
values of irrational quadratic forms at integral points (1985);

3. Green-Tao’s theorem on the existence of arbitrary long arithmetic
progressions in primes (2004);

4. Einsiedler-Katok-Lindenstrauss’ major advancement in Littlewood’s
conjecture on simultaneous Diophantine approximation (2006);

5. Ellenberg-Venkatesh’s local-global principle for representability of
integral quadratic forms (2008);

6. Venkatesh’s subconvexity bounds for a class of standard and
Rankin-Selberg L-functions (2010).
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2. Margulis’ full proof of the Oppenheim conjecture, on density of
values of irrational quadratic forms at integral points (1985);

3. Green-Tao’s theorem on the existence of arbitrary long arithmetic
progressions in primes (2004);

4. Einsiedler-Katok-Lindenstrauss’ major advancement in Littlewood’s
conjecture on simultaneous Diophantine approximation (2006);

5. Ellenberg-Venkatesh’s local-global principle for representability of
integral quadratic forms (2008);

6. Venkatesh’s subconvexity bounds for a class of standard and
Rankin-Selberg L-functions (2010).

Emilio Corso Recurrence and combinatorial number theory



Introduction
Additive properties of subsets of integers

Recurrence in ergodic theory
Ergodic proof of Szemerédi’s theorem
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Quantitative ergodic theory and arithmetic progressions in primes

A list of results

Below is a small sample of successful applications of ergodic theory to
long-standing problems in number theory:

1. Furstenberg’s alternative proof of Szemerédi’s theorem (1977);
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The Abel prize for 2020

The most recent testimony to the mathematical relevance of the
connection between the two areas is 2020’s Abel prize, awarded to
Furstenberg and Margulis

Figure: H. Furstenberg Figure: G.A. Margulis

for having pioneered the use of ergodic theory, and more generally
probability theory, in several other domains of mathematics.
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Arithmetic progressions in various sets

In this presentation, we focus on the application of recurrence theorems
in dynamics to questions pertaining to the additive structure of notable
sets of integers.

A k-term arithmetic progression is a finite set of natural numbers, of the
form {a, a + d , a + 2d , . . . , a + (k − 1)d}, where a, d ≥ 1. We shall
revolve around the following:

Question

Which (infinite) subsets of the natural numbers contain arbitrarily long
arithmetic progressions? How ”large” do they need to be?

For instance, the set of even numbers {2, 4, 6, . . . , }, the set of odd
numbers {1, 3, 5, . . . }, and more generally the set of multiples of a given
natural number aN = {na : n ≥ 1} (and translates thereof) all have this
property.

But this is essentially tautological!
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Quantitative ergodic theory and arithmetic progressions in primes

Arithmetic progressions in various sets

What about ”sparser” sets, and in particular multiplicatively-defined ones
(squares, cubes, geometric progressions)? The question is an instance of
the much broader, long-pursued effort to understand how the additive
and the multiplicative structure of the integers intertwine.

Notation: N = {1, 2, 3, . . . }

I It is obvious that a geometric progression {abn : n ∈ N}, b > 1,
cannot contain a 3-term arithmetic progression.

I Less obvious is that the set N2 = {n2 : n ∈ N} does not contain any
4-term arithmetic progression; this was claimed by Fermat in 1640,
but first rigorously proved by Euler in 1780.

I Tremendously hard is to prove that Nm = {nm : n ∈ N} does not
contain any 3-term arithmetic progression, except possibly for a finite
number of trivial ones, whenever m ≥ 3 (Darmon-Merel, 1997);
admittedly, it is almost as difficult as proving Fermat’s last theorem.
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The conjectures of Erdös and Turán

On the other hand, it has always been widely believed that:

Conjecture (Folklore)

The set of primes {2, 3, 5, 7, 11, . . . } contains arbitrarily long arithmetic
progressions.

More generally, Erdös had postulated the following:

Conjecture (Erdös, 1972)

If A ⊂ N satisfies ∑
n∈A

1

n
=∞,

then A contains arbitrarily long arithmetic progressions.

At present, no progress whatsoever has been made on this conjecture in
its full generality; it is not even known whether such sets contain a
3-term arithmetic progression.
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The conjectures of Erdös and Turán

Actually, Erdös and Turán formulated in 1936 a weaker conjecture,
asserting that a sufficient condition for a set A ⊂ N to contain arbitrarily
long AP’s is to have strictly positive upper density, the latter being
defined by

d(A) = lim sup
N→∞

|A ∩ [1,N]|
N

∈ [0, 1],

where |B| denotes the cardinality of a finite set B, and
[1,N] = {x ∈ R : 1 ≤ x ≤ N}.

Notice: Erdös’ conjecture implies the assertion about primes, while the
weaker formulation of Erdös and Turán does not, as the Prime Number
Theorem gives

π(N) ∼ N

logN
, where π(N) = |{primes in {1, . . . ,N}}|,

so that primes have zero density.
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The theorems of van der Waerden and Szemerédi

The first result identifying non-trivial classes of sets containing arbitrarily
long AP’s is due to van der Waerden:

Theorem (Van der Waerden, 1927)

If the natural numbers are coloured using a finite set of colors, then there
are monochromatic arithmetic progressions of arbitrary length.

It took half a century for the next major progress towards Erdös-Turán’s
conjectures:

Theorem (Szemerédi, 1975)

Let A ⊂ N be a set of positive upper density. Then A contains arbitrarily
long arithmetic progressions.

Szemerédi’s proof relies on an intricate combinatorial argument.
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If the natural numbers are coloured using a finite set of colors, then there
are monochromatic arithmetic progressions of arbitrary length.

It took half a century for the next major progress towards Erdös-Turán’s
conjectures:

Theorem (Szemerédi, 1975)

Let A ⊂ N be a set of positive upper density. Then A contains arbitrarily
long arithmetic progressions.

Szemerédi’s proof relies on an intricate combinatorial argument.
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The ergodic approach and the theorem of Green and Tao

Two years after Szemerédi’s result, Furstenberg realized that the theorem
would follow from a refinement of Poincaré’s recurrence theorem in
ergodic theory, and went on to prove this refinement.

His investigation spawned intensive research by ergodic and number
theorists alike, aimed at establishing quantitative analogues of his results.

These efforts culminated in the crowning achievement of Ben Green and
Terence Tao:

Theorem (Green-Tao, 2004)

The set of primes contains arbitrarily long arithmetic progressions.
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Two years after Szemerédi’s result, Furstenberg realized that the theorem
would follow from a refinement of Poincaré’s recurrence theorem in
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Green-Tao and Dirichlet

Observe that reversing the statement produces a well-known theorem,
dating back to the first half of the 19th century:

Theorem (Dirichlet, 1837)

Let a, d ∈ N be coprime. Then the infinite arithmetic progression
a + dN = {a, a + d , . . . , a + nd , . . . } contains infinitely many primes.

However, the exact transposition of Dirichlet’s theorem fails to hold:
there are no infinite arithmetic progressions consisting of prime numbers!

As of 2020, the longest known arithmetic progression of primes has 27
terms, and it starts with

224584605939537911 .
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Quantitative ergodic theory and arithmetic progressions in primes

Green-Tao and Dirichlet

Observe that reversing the statement produces a well-known theorem,
dating back to the first half of the 19th century:

Theorem (Dirichlet, 1837)

Let a, d ∈ N be coprime. Then the infinite arithmetic progression
a + dN = {a, a + d , . . . , a + nd , . . . } contains infinitely many primes.

However, the exact transposition of Dirichlet’s theorem fails to hold:
there are no infinite arithmetic progressions consisting of prime numbers!

As of 2020, the longest known arithmetic progression of primes has 27
terms, and it starts with

224584605939537911 .

Emilio Corso Recurrence and combinatorial number theory



Introduction
Additive properties of subsets of integers

Recurrence in ergodic theory
Ergodic proof of Szemerédi’s theorem
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A primer in ergodic theory

Definition

A probability measure preserving system is a quadruple (X ,A, µ,T ),
where (X ,A, µ) is a probability measure space and T : X → X is a
measurable map such that T∗(µ) = µ, that is

µ(T−1(A)) = µ(A) for any A ∈ A.

We shall only be interested in the case where X is endowed with a
compact, metrizable topology, A is the Borel σ-algebra associated to it,
and T is a continuous map.

Example: X = {0, 1}N with the topology generated by cylinders

C i1,...,ir = {x = (xn)n ∈ X : x1 = i1, . . . , xr = ir}, i1, . . . , ir ∈ {0, 1},

T : X → X defined by T ((xn)n) = (xn+1)n, µ = 1
2 (δ0 + δ1)⊗N.
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Quantitative ergodic theory and arithmetic progressions in primes

Poincaré recurrence theorem

The main focus of ergodic theory lies in describing qualitatively the
long-term behaviour of typical orbits {T n(x) : n ∈ N}.

Finiteness of the measure entails remarkable recurrence phenomena:

Theorem (Poincaré recurrence)

Let (X ,A, µ,T ) be a probability measure preserving system, E ⊂ X a
measurable subset. Then µ-almost every x ∈ E returns to E infinitely
often, that is there exists E ′ ⊂ E such that µ(E \ E ′) = 0 and

{n ∈ N : T n(x) ∈ E} is infinite for all x ∈ E ′.

A short proof: define

F = lim sup
n→∞

T−n(E ), Fn =
⋃
k≥n

T−k(E ) for all n ≥ 0.

Then the assumptions on µ imply µ(F0 \ F ) = 0. Hence

µ(E ) = µ(E ∩ F ) + µ(E \ F ) ≤ µ(E ∩ F ) + µ(F0 \ F ) = µ(E ∩ F ).
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More structure in recurrence

Does {n ∈ N : T n(x) ∈ E} enjoy some additional arithmetic structure?

Theorem (Furstenberg’s multiple recurrence theorem, 1977)

Let (X ,A, µ,T ) be a probability measure preserving system, E ⊂ X a
measurable subset with µ(E ) > 0. For every k ∈ N there exists n ∈ N
such that

µ(E ∩ T−n(E ) ∩ T−2n(E ) ∩ · · · ∩ T−(k−1)n(E )) > 0 .

A note on the proof: if the sets E ,T−n(E ), . . . ,T−(k−1)n(E )
decorrelate as n tends to infinity, the assertion is intuitively clear (and
obvious if they become independent). This is the case for weak mixing
systems. The theorem is also obvious for a periodic dynamics (Tm = T
for some m > 1, for instance T : x 7→ x + α on R/Z with α ∈ Q).
The general case follows from Furstenberg’s structure theorem, which
allows to decompose an arbitrary system into several ”layers” consisting
either of weak mixing or of almost periodic systems.
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Proof of Szemerédi’s theorem

Assume A ⊂ N satisfies d(A) > 0, choose a subsequence (Nj)j≥1 so that

lim
j→∞

|A ∩ [1,Nj ]|
Nj

> 0 .

Define ω = (ωn)n ∈ X = {0, 1}N by ωn = 1A(n) for every n ≥ 1. Let
E = C 1 = {x = (xn)n ∈ X : x1 = 1}.
Pretend for a moment that the probability measure

µNj =
1

Nj

Nj−1∑
i=0

δT i (ω)

is T -invariant and verifies µNj (E ) > 0 for some Nj .
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Proof of Szemerédi’s theorem

Applying Furstenberg’s multiple recurrence, and unravelling it in our
context, we get: for every k ∈ N there exists n ∈ N, i ∈ {0, . . . ,Nj − 1}
such that T i (ω) ∈ E ∩ T−n(E ) ∩ · · · ∩ T−(k−1)n(E ), that is,
ωi+1 = ωi+1+n = · · · = ωi+1+(k−1)n = 1, or in other words

{i + 1, i + 1 + n, . . . , i + 1 + (k − 1)n} ⊂ A .

However, there is no reason for µNj to be T -invariant nor, a priori, to
give E positive measure.

Fortunately, functional analysis rescues the argument: the set of
T -invariant Borel probability measures on X is sequentially compact for
the weak∗ topology, being a closed bounded subset of the topological
dual of the separable Banach space C (X ) = {f : X → C continuous}.
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Proof of Szemerédi’s theorem

If µ = lim
l→∞

µNjl
is a weak∗ limit of (µNj )j , then

I µ is T -invariant: indeed, if f : X → C is continuous,

∫
X

f dT∗µ =

∫
X

f ◦ T dµ = lim
l→∞

1

Njl

Njl
−1∑

i=0

(f ◦ T )(T i (ω))

= lim
l→∞

1

Njl

Njl∑
i=1

f (T i (ω)) = lim
l→∞

1

Njl

Njl
−1∑

i=0

f (T i (ω)) =

∫
X

f dµ ;

I E has positive µ-measure:

µ(E ) = lim
l→∞

1

Njl

Njl
−1∑

i=0

δT i (ω)(E ) = lim
l→∞

|A ∩ [1,Njl ]|
Njl

> 0 .
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Quantitative ergodic theory and arithmetic progressions in primes

Proof of Szemerédi’s theorem
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Njl

> 0 .
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A ”finitary” version of Szemerédi’s theorem

Rigorously, we thus apply Furstenberg’s multiple recurrence to µ, and
conclude as before using that

µ(E ∩ · · · ∩ T−(k−1)n(E )) > 0 =⇒ µNj (E ∩ · · · ∩ T−(k−1)n(E )) > 0

for all j sufficiently large.

Furstenberg’s proof relies crucially on a compactness argument, thus
failing to provide any quantitative refinement. However, elementary
combinatorial reasoning allows to deduce the following statement:

Theorem (Quantitative Szemerédi)

Let k ∈ N, 0 < δ ≤ 1. There is N0 = N0(k, δ) such that, for any N ≥ N0,
any set A ⊂ {1, . . . ,N} with |A| ≥ δN contains a k-term arithmetic
progression.
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Further quantitative refinements

Heuristics derived by choosing A randomly among density-δ subsets of
{1, . . . ,N} suggests that such an A should contain ∼ δkN2 k-term
arithmetic progressions.

The intuition is confirmed by the following, apparently stronger result:

Notation: for every N ∈ N, we denote ZN := Z/NZ. If A is a finite set,
f : A→ C is a function, we denote

E(f ) = E(f (x)|x ∈ A) =
1

|A|
∑
a∈A

f (a) .

Proposition

Fix k ∈ N, 0 < δ ≤ 1. There exist N0 = N0(k, δ) ∈ N, ck,δ > 0 such that,
if N ≥ N0 and f : ZN → R satisfies both 0 ≤ f (n) ≤ 1 for every n ∈ ZN

and E(f ) ≥ δ, then

E(f (n)f (n + r) · · · f (n + (k − 1)r) | (n, r) ∈ ZN × ZN) ≥ ck,δ .
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Von Neumann ergodic theorem

There is an abstract ergodic-theoretic analogue to this proposition, which
greatly inspired Green-Tao’s approach for dealing with prime numbers.

It is a generalization of the celebrated:

Theorem (von Neumann ergodic theorem)

Let (X ,A, µ,T ) be a probability measure preserving system,
f ∈ L2(X , µ). Then, there exists f̃ ∈ L2(X , µ) satisfying

I f̃ ◦ T = f̃ (in L2(X , µ))

I Eµ(f̃ ) = Eµ(f )

such that the sequence

1

N

N−1∑
n=0

f ◦ T n , N ∈ N,

converges towards f̃ in the L2-norm.
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A generalized von Neumann ergodic theorem

The generalization reads as follows:

Theorem (Host-Kra, 2005)

Under the assumptions of von Neumann’s theorem, supposing in addition
that f ∈ L∞(X , µ), it holds that, for every k ∈ N, there exists
fk ∈ L2(X , µ) such that the sequence

1

N

N−1∑
n=0

f ◦ T n · f ◦ T 2n · · · f ◦ T kn, N ∈ N,

converges towards fk in the L2-norm.

The result is influenced by the stronger version of Furstenberg’s
recurrence theorem: if µ(A) > 0, then

lim inf
N→∞

1

N

N−1∑
n=0

µ(A ∩ T−n(A) ∩ · · · ∩ T−(k−1)n(A)) > 0 for every k ∈ N.
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A generalized von Neumann ergodic theorem

Since convergence in the theorem of Host and Kra occurs with respect to
the L2-norm, it entails convergence of the expectations:

Eµ
(

1

N

N−1∑
n=0

f ◦ T n · f ◦ T 2n · · · f ◦ T kn

)
N→∞−→ Eµ(fk) .

The analogy with the proposition is thus explained in that

E(f (n)f (n + r) · · · f (n + (k − 1)r) | (n, r) ∈ ZN × ZN)

= E
(

1

N

N−1∑
r=0

f (n) · f (T r (n)) · · · f (T (k−1)r (n))

∣∣∣∣ n ∈ ZN

)
where T : ZN 3 x 7→ x + 1 ∈ ZN preserves the uniform measure on ZN .
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Quantitative ergodic theory and arithmetic progressions in primes

Adapting to primes: pseudorandomness

If, in the proposition, we could take f to be the restriction to ZN of a
function supported on the primes (that is, such that f (n) = 0 for every
composite n ∈ N), then Green-Tao’s theorem would follow readily, or at
least up to some ”wraparound” issues in ZN (easy to circumvent).

However, this is nothing but wishful thinking, as f (p) should grow at
least logarithmically in p for E(f ) ≥ δ to be satisfied asymptotically!

What if we could loosen the upper bound f (n) ≤ 1 in the assumptions of
the proposition, and retain a similar conclusion?

This is the major insight of Green and Tao: Szemerédi’s theorem should
hold not just for positive-proportion subsets of N, but also of sufficiently
”random” (from an additive perspective) subsets of N.
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hold not just for positive-proportion subsets of N, but also of sufficiently
”random” (from an additive perspective) subsets of N.

Emilio Corso Recurrence and combinatorial number theory



Introduction
Additive properties of subsets of integers

Recurrence in ergodic theory
Ergodic proof of Szemerédi’s theorem
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Adapting to primes: pseudorandomness

Their major contribution lies in replacing the constant function ν ≡ 1 by
a pseudorandom measure (νN)N∈N, where νN : ZN → R≥0 is called a
measure if it satisfies E(νN) = 1 + o(1), with o(1)→ 0 as N →∞.

The formal notion of pseudorandomness is rather involved, and draws
upon previous work of T. Gowers (1998), who devised yet another proof
of Szemerédi’s theorem via Fourier-analytic methods.

Vaguely it amounts to requiring that, for any collection of ”Q-linearly
independent” affine forms ψ1, . . . , ψm : Zt

N → ZN , where m and t are
small integral parameters, the random variables
νN(ψ1(x)), . . . , νN(ψm(x)), x ∈ Zt

N are independent.

The driving principle is that there should be functions νN supported on
(almost-) primes enjoying this property, namely the events ”ψj(x) is
almost prime” are independent of each other as j varies.
That’s what is meant by random additive behaviour of primes.
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Adapting to primes: pseudorandomness

Quantitative Szemerédi holds in the context of pseudorandom measures:

Theorem (Green, Tao)

Fix k ∈ N, 0 < δ ≤ 1. There exist N0 = N0(k , δ) ∈ N, c ′k,δ > 0 such that,
for any k-pseudorandom measure (νN)N , any N ≥ N0 and any
f : ZN → R satisfying both 0 ≤ f (n) ≤ νN(n) for every n ∈ ZN and
E(f ) ≥ δ, we have

E(f (n)f (n + r) · · · f (n + (k − 1)r) | (n, r) ∈ ZN × ZN) ≥ c ′k,δ .

Assuming this, existence of a k-term arithmetic progression of primes is
inferred taking as f the restriction to ZN of (a modified version of) the
von Mangoldt function

Λ(n) =

{
log p if n = pj for some prime p and m ∈ N
0 otherwise .
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Concluding remarks

I The proof of Green-Tao’s main quantitative theorem closely
resembles, in the overarching strategy, Furstenberg’s proof of the
structure theorem for measure preserving systems (decomposition
into a tower of compact extensions of weak-mixing systems). The
function f is split into two components: a ”uniform” part (in the
sense of Gowers uniformity norms), whose contribution to the
expectation is controlled via a von Neumann-type estimate, and an
”anti-uniform” part, which is bounded by a constant and thus taken
care of by quantitative Szemerédi.

I The foremost limitation of an ergodic-theoretic approach to number
theory is that proofs tend to be non-quantitative and non-effective.
However, the pursuit of quantitative analogues of classical ergodic
theorems may lead, as in Green-Tao’s example, to the disclosure of
surprising qualitative results.
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