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Free motlon and randomness

WAEIE the Iong—term evolutlon in the sen\se of cIaSSIcaI mechanfcs ofia ;.
- free partlcle constralned to lie on a mann‘old7 o

The |ncarnat|on ‘of Newton s f|rst Iaw of motron |n th|s model prescnbes i

: that the. partlcle follows a dlstance mlnlmlzmg tra'j'ctory, in the dlrectlon 2 i

of its: |n|t|a| veIOC|ty Rl G ol

To what extent is the o'ualitative _beha\_/i'_our of its'tr_aj-'e.ctory' pted_iictable? i



At tlmes negatlwty is upllftlng:

The answer depends heaV|Iy on the curvatuv

operties of the manifold

ilg!
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The stage: Riemannian surfaces -

Let'(S g) be a connected cOmpIete"'Riém‘ann‘ian surface, that iS' %
> S isa. Hausdorff connected second countable topologlcal space ;

Iocally homeomorphlc to R2

“»-S admits an atlas of topologlcal charts whose transrtron maps are .- .
smooth dlfFeomorphlsms Sl o b

> there is‘a smoothly varylng a55|gnment P F gp of an mner product

‘ gp on the tangent space T55: for. every p €:S;

> 'deflne the Iength of a smooth curve E [a b] — S as.

= [P/ B Oy (D)) dt= {2 T(2) Il 4t and the
dlstance dg(p,q) between two pornts p,q € S as the mﬂmum of aII

“ lengths of 'smooth curves Jomlng pand q, we reqmre that (S,d ) IS' :
_.a complete metrlc space e '

Example any compact connected smooth. embedded surface 5 C R gp‘
 being the restriction to T, 5 < R3 o~ R3 of the standard |nner product Y
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o mathematlcal framework the geodesrc ﬂow
% Defme the tangent bundle i

rs= || T8 {(p, V) ;'fp.ef-‘s.fa"&; £ T,5)

‘-_pES

“and the unit tangent bundle TS = {(p, v) e TS.{:_

: Hoprc Rlnows theorem for any (p,v) 6 T15 there e a (unlque) smooth
Curve 7,3 v R S such that . T LT

e 7 minimizes dlstances IocaIIy for every to < R there .‘IS"_ uich'-
: that L(v][g—5,6+51) = dg(v(to = 3),- (to + 5))
> (0)=p, 7 (0) =v; Rise it
> To.v has constant init speed HWP o )ngl for any teR.
A5 We may thus deflne, for any teR, |
get TES whoriel w ke e i



A z00 of geodesm orblts

The coIIectlon (gt)teR deflnes 3 smooth flow 'caIIed the geodeslc flow,

: ..0n T15 the map R x- T15 iy T8, (t p, v)) s gi(p, v) is smooth and.
' 80 gs = 8its for any t seR: Geodes1cs on the surface S are prOJectlons'-
of geodesm orbrts (gt(p, ))teR iy e




A z00 of geode5|c orblts

The coIIectlon (gt)teR deflnes 3 smooth flow caIIed the geodeslc flow,

: ..0n TIS the map R x T15 1 T8, (t p, )r—%gt (p, v) is smooth and. |
' 80 gs = 8its for any t seR: Geodes1cs on the surface S are prOJectlons'-
of geodesm orbits (gt(p, ))tER Sl e

: What_ do geodeSIc orblts look -Illke? s




J A z00 of geode5|c orblts

The coIIectlon (gt)teR deflnes 3 smooth flow caIIed the geodeslc flow,
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Tamde Q TamBe Q

A

Th.ey might be 'compa(:t, dense or simply wild. :
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' Descri blnggeodesncsstat|st|callyergOdlc --the‘.o:ry'_"_

ig A precnse descrlptlon of every geodeSIC orblt is out of reach
Nevertheless ‘a statlstlcal approach prov1des a dearer understandlng

' The approprlate tooIs to pursue th|s strategy are: gaven by the ergodlc 5
: theory of flows, Whose stochastlc counterpart 5 the theory of statlonary
stochastlc processes ) : : :

In order to fruitfully apply its. methods it is essentlal to equnp T15 Wlth a
_natural probablllty measure wh|ch is invariant under. the geodesnc flow

' The Rlemannlan structure on S gives rlse to a. volume measure vo|5 on: S
Incase S is embedded in R3 vols can be defined as the restrlctlon to 5_
of the 2-dimensional Hausdorff measure on R3. ; :

. _Standing assur_nption.: o 5 com-pact,_an‘d vols(S) :_71. b



The geodesm ﬂow as a statlonary ‘process

The L/ouw//e measure mTls on T15 |s del ed weakly via.

/ fme15 —// f(p, _)dﬂ (v) dvols p) for any f e C(TIS) v
Tis e b _ :

" where 9 denotes the unique rotatlonally mvanant probablllty measure on :
TlS—{veTS ||vH _1} g : ;
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The L/ouw//e measure mTls on T15 |s deﬁned weakly via,
/ f dmpis = // f(p, )d9 (v) dvols p) for any f e C(TIS) v
TS ; _ ] ; '

" where 9 denotes the unique rotatlonally mvanant probablllty measure on :
'T15—{v€T5 ||vH —1} o : :
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The geode5|c ﬂow as a statlonary process

The L/ouw//e measure mTls on T15 |s deﬁned weakly via,
/ f dmps = // f(p, )d9 (v) dvols p) fcsr any f e C(TIS)
TS ; _ ] ;

" where 6 denotes the unique rotatlonally mvanant probablllty measure on :
'T15—{v€T5 ||vH =1 o ; :

Liouville's theorem (1838): mT15 is invariant under (gt)tGR, that g i
- mris(gi(B)) = mis(B) f_or'any te ]R.a_nd'an_y mlea.sur'abl_e_'.B-C Tis, .

- Consequently, for any (measurable) bbser\)able fr TiS s ']R'the stochas-
: tic process (fogt)teR, deflned on the probablllty space (TIS 67-15, m7—15) :
s statlonary : . i i

; Overarchmg paradigi‘n in negative curvature the f 9 gt behave much‘
5 I|ke mdependent random varlables ' '



The GaUSSIan cu rvatu re

SuppoSe S R Fix a pomt p ¢ S and a: mt vector 7 attached tdip
and normal to S . For any plane Mn.> 7 the mtersectlon ﬂﬁS is a smooth :
i curve |nS|de M, havmg a well- deflned stgned curvature K with respect to 3
its normal vector H. The pr/nCIpa/ curvatures I€1,Ii2 of S at p are- the '
' supremum and the infimum of all the curvatures obtamed by varymg ﬂ
The Gaussian curvature of S at p is the product K *"Iﬁl{g 235




 A-negatively curved surface: the pseudosphere
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Ergod|C|ty of the geodesrc flow

P05|t|ve curvature makes nearby geodesms stay ciose throughout therr evo—. ;
* lution, whlle negatrve curvature forces them to spread out Th|s I|es at the.
heart of the mamfestatlon of randomness : : '

CA flrst embodlment of randomness: | 5 ergod|C|ty If 5 has Gau55|an ol
vature K < 0, the geodesm ﬂow (gt)teR is ergodlc W|th respect to the

L|ouvrIIe measure mris:

forany B C T_ls, e(B) = B vt <R — mr;-;i_(B)v _f{-b,--l}l"'

" This y|e|ds at once remarkable chaot|C|ty features of geodesrcs mTls.—.
4 almost su rely, (forward) geode5|c orbrts eqUIdlstrlbute in the amblent space
for any open V' C TS, : &

7r_nR{o St<Tigme VI mug(v).



| A‘strong:fla:w_;o"f |arge numberS o

* . Theorem (Birkhoff's pointwise ergodic theorem)
. If (¢+)ter is @ measure-preserving ergodic flow on a probability space
(X, B,p) and f: X — R is a p-integrable function, then

1T
TiToo?/o f(pex) dt—/de,u

for p-almost every x € X.



A strong o of g mumbers

* . Theorem (Birkhoff's pointwise ergodic theorem)
If (¢¢)ter Is a measure-preserving ergodic flow on a probability space
(X, B,p) and f: X — R is a p-integrable function, then

1T
Tingoo7/o f(pex) dt—/de,u

for p-almost every x € X.

: Equwalently if. (Xt)t>0 is a statlonary ergodlc E—valued process then 2
: SLLN holds for any- statistic f E =4 R with f|n|te expectatlon

7/ f{ xt dt T °°]E[f(X0)] ']p.'a:mqst sur'e[y,_' e



A Central Limit Theorem?
Corﬁ‘pa_re-d‘ to the SL‘_L-I'\‘_I,-_it.he "V_.e’lil}itd'_ity_‘,'c;f ; a .".r;n.c';r__é:'_}élia‘b_le-‘de.tector :
of i.hdepe_rjderii:e, or rather weak depende e, for thelb'roc'eSs_,'(f_ [ gt_)';z-'o._. :
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A Central Limit Theorem?

Compared o the SLLN the valldlty of 4 CLT rs a more relrable detector :

of |ndependence or rather weak’ dependence for the process (f o gt)t>0 o

In general the CLT fails- o ergodic. systems U

: Con5|der X {0; 1} P X = X defmed by gb(O) Ley qb( ) =. 0, ahd
(50 +.01); then ¢ is ergodlc with’ respect to ,u However for any
f b — R with zero mean, the random variables L \F Z oE o ng” do ‘not

converge in distribution towards a Gaussmn random varlable..‘ N

o On the other hand the abundance of possrble correlatlon propertles for3
~ processes of the form (f o gbt)t accounts for the emergence of varlous

; dlstrlbutlonal behaviours in the I|m|t S e :

" Therefore, we need a general framework to study the Ilmltlng dlStI’IbUtIOI‘lS

» of ergodlc lntegrals IT(f 9 *fo f(¢7tX ) dt.
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Spatial_. dlstrlbutlonai |,m|ttheorem
Definition (Spatial DLT).

" Let (X, B, 1, (¢¢)tcr) be a measure-preserving flow. The ergodic
integrals of f € £L1(X, B, i) satisfy a spatial distributional limit theorem
_if there exist real functions (A1), (B7), with By — 400 as T — +o0,
and a non-trivial real-valued random variable Y such that the random

' variables Y7 = IT(%%AT converge in distribution towards Y as T — +o0.



iPad di demetrio


Spatial dlstrlbutlonal |,m|ttheorem
Definition (Spatial DLT).

Let (X, B, , (¢+)tcr) be a measure-preserving flow. The ergodic

integrals of £ € L1(X, B, i) satisfy a spatial distributional limit theorem
_if there exist real functions (A1), (B7), with By — 400 as T — +o0,

and a non-trivial real-valued random variable Y such that the random
variables Y7 = M converge in distribution towards Y as T — +o0.

As it happens the geodesm ﬂow in negatlve curvature SatleIES a rather

_strong mixing property, resultmg in a full analogue of the CLT



Spatial d'ist'ributioﬁel'f Ii_‘iﬁi,ﬁffhé._:o‘“r'é.m‘ff t'
Definition (Spatial DLT).

Let (X, B, , (¢+)tcr) be a measure-preserving flow. The ergodic

integrals of £ € L1(X, B, i) satisfy a spatial distributional limit theorem
_if there exist real functions (A1), (B7), with By — 400 as T — +o0,

and a non-trivial real-valued random variable Y such that the random

/T(f)—AT

variables Y7 = converge in distribution towards Y as T — +o0.

As it happens the geodesm ﬂow in negatlve curvature satlsfles a rather

_strong mixing property, resultmg in a full analogue of the CLT
" Theorem (Sinai, Ratner)
. Suppose S has negative Gaussian curvature. The ergodic integrals, along .

_ the geodesic flow, of any smooth function f: T'S — R not

cohomologous to a constant satisfy a spatial DLT. Specifically

IT(f) = T [71), f dmpis To%0 \f
oVT

(0,1) in distribution, for some o > 0.



Beyond Donsker s mvarl'

We shaII deduce the result fr0m an almos

invariance principle



J Beyond Donsker s mvanance prmcnp{e

We shaII deduce the result from an a/most sure lnvar/ance prfnClp/e

Recall Donsker s mvanance prmaple if (X ,>1 is a sequence of i | id. ran~

dom variables with zero mean and unit varlance then the processes (St : )t20_
i glven by 5( D ZI<MX satlsfy e ) :

3 (Bi)ost< in distribution, .

_ S(")> et
<\/ﬁ 08l S

wher_e'.(Bt_)'tZ_o' is a standard_.Brownian'mbt"ion';'
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We shaII deduce the result from an a/most sure lnvar/ance pr/nCIp/e

RecaII Donsker s mvanance prmaple if (X )it Hs a sequence of i | id. ran~

dom variables with zero mean and unit varlance then the processes (St : )t20_
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- 5(")> g
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where (Bt)t>o is a standard Browman motlon

; .'Attempts to extend this functlonal ver5|on of the: CLT have permeated
much of the research in. probablllty theory durlng the SIXtIeS ‘



Beyond Donsker s |nvar|ance prmcrp{e
We shaII deduce the result from an a/most S ‘e lnvar/ance prmc:p/e

RecaII Donsker s mvarrance prmcrple if (X )iz1iis: a sequence of i | id. ran~

dom variables with zero mean and unit varlance then the processes (5t : )tzo_
. glven by 5() ZI<MX satisfy - R

Jn

where. (Bt)t>o' is a standard Brownian"mot'ion'-'

<—Sn)> 2% (By)osksr | in distribution, .
5 0<t<1 B e

; .'Attempts to extend this functlonal ver5|on of the: CLT have permeated;
much of the research in. probablhty theory durlng the SIXtIeS ‘

. In this regard, the notion of Almost Sure lnvarlance Prlnclple (ASIP) has-

; been introduced. by Strassen in the context of martlnga}es and Iater S

tended by Philipps and Stout to more general weakly dependent processes
[t formalizes the intuition that trajectories of certaln random processes are
weIl approxrmable by Brownian traJectorles '



The /—\Imost Sure Invarlance Prmapte

In the settlng of ergodlc mtegrals it may be phrased as follows
Definition (Almost Sure Invariance Prmaple)

Let (X, B, i, (¢+)ter) be a measure-preserving flow. The ergodic
"integrals I,(f) of f € L1(X, B, u) satisfy the Almost Sure Invariance
- Principle if there is a probability space (€2, F,P), two processes

(1))e>0, (Bt)>0 defined on (2, F,P) and o > 0 such that:

1. (/{)t>0 has the same law as (/:(f))¢>o0;
2. (Bt)t>0 is a standard Brownian motion;

3. for P-almost every w € Q,

|1(w) = Boae(w)] = o(t*2).



The /—\Imost Sure Invarlance Prmapte

In the settlng of ergodlc mtegrals it may be phrased as follows
Definition (Almost Sure Invariance Prmaple)

Let (X, B, i, (¢+)ter) be a measure-preserving flow. The ergodic
"integrals I,(f) of f € L1(X, B, u) satisfy the Almost Sure Invariance
- Principle if there is a probability space (€2, F,P), two processes

(1))e>0, (Bt)>0 defined on (2, F,P) and o > 0 such that:

1. (/{)t>0 has the same law as (/:(f))¢>o0;
2. (Bt)t>0 is a standard Brownian motion;

3. for P-almost every w € Q,

|1(w) = Boae(w)] = o(t*2).

& 'AS_|P =y Don_skér's P i



J Consequences of the ASIP

If the ergodlq |ntegrals of f fulflll the ASIP ‘thei

: he processes (I (f))t>0' g 3
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If the ergodlc |ntegrals of f fulflll the ASIP then the processes (I (f))tz’o' f
o defmed by I(")(f) = ,,t(f) satlsfy Sioa : S
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If S has negative Gaussian curvature and f: TS — R is a smooth
" function, not cohomologous to a constant, with f T1g f dmtis = 0, then
- the ergodic integrals of f along (g:)tcr satisfy the ASIP.



Consequences of the /—\SIP

If the ergodlc |ntegrals of f fulfill the ASIP then the processes (/ (f))tzro' :
L def'”ed by I(n)(f) = Int(f) Satlsfy i T

el (f)> - = (Bi)o<iz1 - im distribution;,
(U\f ‘ el s o *t’__ L Gt

As mentioned 'earlier, er ha\_/e:
Theorem (Denker, Philipp)

If S has negative Gaussian curvature and f: TS — R is a smooth
" function, not cohomologous to a constant, with f T1g f dmtis = 0, then
. the ergodic integrals of f along (gt)teR satisfy the ASIP.

; As is well- known the ASIP enables to transfer typlcal features of ! BrOWman
: trajectorles to the process under: con5|derat|0n in partlcular asymptotlc‘
~'f|uctuat|on results, such as the Law of the Iterated Logarlthm carry over.



Proof of the ASIP: an outline
The sallent trait of the proof is the symbolz

Codmg of the geodesnc flow,

WhICh aIIows to |nterpret it.as a suspensmn flow over a Markov shlft :

Lz /4 < c.97r GX

R=45% kaTum
Tinne To X l

T
&

]
GRS X'y 8)%, Tix—x
( ,2.4,6,8 )
— (.....2,4,6,83, )
\-/‘),‘- \":)K/ PaocjecTioms Y )(-—-7& -y are . "
iy T

KL—-)X".’

o sTnomS&J rvynmma Ha/xl(ov pnou./n
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AII the results hltherto presented are qumtessentlal probablllstlc state—' §

ments they capture propertles of almost every, trajectory

In dynamlcal systems and chrefly in: apphcatlons towards geometrlc and .

. number-theoretical problems, -it is often- deswable to attaln a qualltatlve s

_ understandlng of any orbit. - Even though this turns. out to be frequently
out of reach, a further shortfaII of the spatial DLT is that it provrdes no
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: not even: for
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Slngle orblt dynamlcs borrowrng from number theory

AII the results h|therto presented are qumtessentlal probablllstlc state—' §

ments they capture. propertles of almost every, trajectory

In dynamlcal systems and chlefly in: appllcatlons towards geometrlc and .

. n.umber—theoretrcal problems, -it is often___deswable_to‘at,t_aln_ a qualltatllve i

_ understandi'ng of any orbit. - Even though this turns. out to'be' freqdentl'y
out of reach, a further. shortfaII of the spatial DLT is that it provrdes no
mformatlon on the behaviour of the functlons t e It(f"

X), not even: for
typical points x.

; ,'Number theorists ‘have devrsed |ngen|ous tools to descrrbe the statlstlcalz
" behaviour of h|gh|y oscillatory functlons as the It(f x) t = R often are

: The archetypical result in thls dlrectlon isa celebrated theorem of Erdos and '
¥ Kac concernlng the dlstrlbutlon of the arrthmetlc functlon W N>1 b N

: w(h) = nu-mber of_.dist_in'ct prime'di'_v__isor's- of-_n.l_.



J The Erdos Kac theorem and the _teﬂ”'poral DLT
_ Theorem (Erdos—Kac 1939) ‘

The random variables Yy : {1,...,N} — R defined as

w(n) — loglog N
Vloglog N

converge in distribution towards N'(0,1) as N — oo.

Yn(n) = , 1< n<N, nsampled uniformly,




The Erdos Kac theorem and the temporal DLT

Theorem (Erdos Kac 1939)
The random variables Yy : {1,...,N} — R defined as

w(n) — loglog N
Vloglog N

converge in distribution towards J\/ (0, 1) as N — oo.

Yn(n) = , 1< n<N, nsampled uniformly,

Motuvated by this statement; we |ntroduce a temporal verS|on 'of the CLT:

' Deﬁnltlon (Temporal DLT)

" The ergodic integrals /;(f, x) of an integrable function f satisfy a
. temporal DLT along the orbit of x € X if there is a non-trivial r.v. Y
and families of real numbers (A7 (x)), (B71(x)) with Br(x) T2%° o0 such

that X7(t) == % converge in law towards Y as t ~ Ujo, 1]-



ASIP and temporal DLT

The prevnous conS|derat|ons readlly aIIow to St ttle the questlon of exnstence o
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ASIP and temporal DLT

The prewous con5|derat|ons readlly aIIow to Settle the questlon of existence

it of a temporal DLT for ergodlc mtegrals along the geodeSlc flow

Indeed the ASIP is |ncompat|b|e Wlth a temporal DLT If the ergodlc..
: mtegrals of f satlsfy the ASIP, then: the followmg holds i almost surely

; for any r.v. iy there is an |ncreasmg sequence (T )neN of tlmes such that

l-t(f,x) s ..i_n law, _as.:t'-wz;;[o"n - i

1
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it of a temporal DLT for ergodlc mtegrals along the geodeSlc flow

Indeed the ASIP is |ncompat|b|e with a temporal DLT If the ergodlc -
: mtegrals of f satlsfy the ASIP, then: the followmg holds [t almost surely
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ASIP and temporal DLT

The preV|ous consrderatlons readrly aIIow to"_ ttle the questlon of existence

it of a temporal DLT for ergodlc mtegrals along the geodesrc flow

Indeed the ASIP is |ncompat|b|e with a temporal DLT If the ergodlc -
: mtegrals of f satlsfy the ASIP, then: the followrng holds [t almost surely
; for any r.v. y there is an |nc_reasrng sequen_ce (T,,_),,eN_of- -tlme_s.su_ch th_at

— i (f, X) e Y. in |_aw,' as t"’u[or] 2

5 Th|s stems from the analogous property of occupat/onal (random) mea—3
sures of Brownian paths: almost sure[y, the set of accumulatron pomts of !
' the family 1 T fo O dt (for the weak topology on P( )) is P( Yo

! Therefore

i

ASIP = aI_'most_-sur'er, no ternpora__l DL‘T.



A much studled cousm the horocyj"le ﬂow e

The geode5|c ﬂow in: negatlve curvature belongs to the broad and nowadays A

* . deeply understood cIass of Anosov f/ows charactenzed by the property. that.
the flow the- expanded and the contracted drrectron “flll up” the whole S
; space The ASIP (hence the spatlal CLT) hoIds"f“_""

any SUCh flow.
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The geode5|c flow in: negatlve curvature belongs to the broad and nowadays A
© . deeply understood class of Anosov flows; charactenzed by the property. that.

the flow the- expanded and the contracted dlrectlon “flll up” the whole S

space The ASIP (hence the spat|a| CLT) holds for any SUCh flow.

'Much Iess understood as far as dlstrlbutlonal l|m|t theorems are concerned
is'a second flow of geometrlc nature which is closely mtertwmed with the
geodesrc flow: it is known as the horocycle flow and is deflned preasely
for surfaces S with curvature K'< 0. ik sl
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o much studled cousm the horocycle flow i

The geode5|c flow in: negatlve curvature belongs to the broad and nowadays A
© . deeply understood class of Anosov flows; charactenzed by the property. that.

the flow, the- expanded and the contracted dlrectlon “flll up” the whole S

space. The ASIP (hence the spat|a| CLT) holds for any SUCh flow.

'Much Iess understood as far as dlstrlbutlonal l|m|t theorems are concerned
is'a second flow of geometrlc nature which is cIoser mtertwmed with the
geodesrc flow: it is known as the horocycle flow and is deflned preusely

for surfaces S with curvature K < 0.

o Con5|der for each x € T15 the set (called stable man/fold through x) i

W3 (x) = {y € T15 d(gty th) Eaben 0},

; where disa (any) Rremanman metric on T15 We mlght choose dnlarce

. Iength parametrization.t —. ht( ) of the differentiable curve: Ws(x) The‘

’ one—parameter contlnuous group (ht)teR is the horocycle flow on: T15



Geodesm and horocycle orblts on "he hyperbollc plane _

For the sake of |Hustratlon we con5|der th'

i geometry( = vl) the hyperbollc plane As a smooth surface it.is the
o upper—half plane H = {X + Iy E C:;

Ok the R1e__mlann,|_an metrlc is
defmed as gX+,y(v w) = (v w) for any v, W'.G 5

RS R, sothat

L(’y) . / ||'Y ((3|)| é.t for any .curVef.y .[al b]A% H of c.Ias.s‘Cll

e m - - - -
.

: ._std Mow

i
— Bonoc. Plow

: ndard model of hyperbo//c i
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it onIy in the case of constant negative curvature where itis p055|ble to resort
to the well- establlshed harmomc anaIyS|s of the Lie: group SLz( )
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A fertlle dlrectlon of research horocycles and beyond

Asymptotlc estlmates for ergod|c |ntegrals along horocycle OI’bltS are known

it onIy in the case of constant negatjve curvature where itis p055|ble to resort
to the well- establlshed harmonic analyS|s of the Lie: group SLz( )

i The spat|a| DLT i is establlshed onIy for a restrlcted class of smooth
functions; remarkably, the limit drstrlbutlon is not Gaussran

» For functlons not in th|s dlstmgwshed class there |s strong eV|dence
; porntlng to a failure of the spatial PIET: but no proof is aVarlabIe :

> The temporal DLT holds almost surely for a vast. class of functlons 5
and everywhere for wrndmgs determmed by harmonlc 1 forms

Dlstrlbutlonal limit theorems of. varlous sorts are the subJect of growmg rnr -

: terest in dynamics; |nherent|y motivated by the quest for unlversal l|m1t|ng sl

Iaws governing ergodic sums and integrals, they are part of a wholesale
; attempt to account for, and quantrfy, the mamfestatlon of randomness in

determ|nlst|c evolutions.



