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Free motion and randomness

What is the long-term evolution, in the sense of classical mechanics, of a

free particle constrained to lie on a manifold?

The incarnation of Newton’s first law of motion in this model prescribes

that the particle follows a distance-minimizing trajectory, in the direction

of its initial velocity.

To what extent is the qualitative behaviour of its trajectory predictable?
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At times negativity is uplifting...

The answer depends heavily on the curvature properties of the manifold.
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The stage: Riemannian surfaces

Let (S , g) be a connected, complete Riemannian surface, that is:

▶ S is a Hausdorff, connected, second countable topological space,

locally homeomorphic to R2;

▶ S admits an atlas of topological charts whose transition maps are

smooth diffeomorphisms;

▶ there is a smoothly varying assignment p 7→ gp of an inner product

gp on the tangent space TpS , for every p ∈ S ;

▶ define the length of a smooth curve γ : [a, b] → S as

L(γ) :=
∫ b

a

√
gγ(t)(γ′(t), γ′(t)) dt =

∫ b

a
∥γ′(t)∥g dt, and the

distance dg (p, q) between two points p, q ∈ S as the infimum of all

lengths of smooth curves joining p and q; we require that (S , dg ) is

a complete metric space.

Example: any compact, connected smooth embedded surface S ⊂ R3, gp

being the restriction to TpS ≤ TpR3 ≃ R3 of the standard inner product.
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A mathematical framework: the geodesic flow
Define the tangent bundle

TS =
⊔
p∈S

TpS = {(p, v) : p ∈ S , v ∈ TpS}

and the unit tangent bundle T 1S = {(p, v) ∈ TS : ∥v∥g = 1}.

Hopf-Rinow’s theorem: for any (p, v) ∈ T 1S there is a (unique) smooth

curve γp,v : R → S such that

▶ γ minimizes distances locally: for every t0 ∈ R there is δ > 0 such

that L(γ|[t0−δ,t0+δ]) = dg (γ(t0 − δ), γ(t0 + δ));

▶ γ(0) = p, γ′(0) = v ;

▶ γp,v has constant unit speed:
∥∥γ′

p,v (t)
∥∥
g
= 1 for any t ∈ R.

We may thus define, for any t ∈ R,

gt : T
1S −→ T 1S

(p, v) 7→ (γp,v (t), γ
′
p,v (t)) .
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A zoo of geodesic orbits

The collection (gt)t∈R defines a smooth flow, called the geodesic flow,

on T 1S : the map R× T 1S → T 1S , (t, (p, v)) 7→ gt(p, v) is smooth and

gt ◦ gs = gt+s for any t, s ∈ R. Geodesics on the surface S are projections

of geodesic orbits (gt(p, v))t∈R.

What do geodesic orbits look like?

They might be compact, dense or simply wild.
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Describing geodesics statistically: ergodic theory

A precise description of every geodesic orbit is out of reach.

Nevertheless, a statistical approach provides a clearer understanding.

The appropriate tools to pursue this strategy are given by the ergodic

theory of flows, whose stochastic counterpart is the theory of stationary

stochastic processes.

In order to fruitfully apply its methods, it is essential to equip T 1S with a

natural probability measure which is invariant under the geodesic flow.

The Riemannian structure on S gives rise to a volume measure volS on S .

In case S is embedded in R3, volS can be defined as the restriction to S

of the 2-dimensional Hausdorff measure on R3.

Standing assumption: S is compact, and volS(S) = 1.
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The geodesic flow as a stationary process

The Liouville measure mT 1S on T 1S is defined weakly via∫
T 1S

f dmT 1S :=

∫
S

∫
T 1

p S

f (p, v) dθp(v) d volS(p) for any f ∈ C(T 1S),

where θp denotes the unique rotationally invariant probability measure on

T 1
p S = {v ∈ TpS : ∥v∥g = 1}.

Liouville’s theorem (1838): mT 1S is invariant under (gt)t∈R, that is

mT 1S(gt(B)) = mT 1S(B) for any t ∈ R and any measurable B ⊂ T 1S .

Consequently, for any (measurable) observable f : T 1S → R, the stochas-

tic process (f ◦gt)t∈R, defined on the probability space (T 1S ,BT 1S ,mT 1S),

is stationary.

Overarching paradigm: in negative curvature, the f ◦ gt behave much

like independent random variables.
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like independent random variables.
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The geodesic flow as a stationary process

The Liouville measure mT 1S on T 1S is defined weakly via∫
T 1S

f dmT 1S :=

∫
S

∫
T 1

p S

f (p, v) dθp(v) d volS(p) for any f ∈ C(T 1S),

where θp denotes the unique rotationally invariant probability measure on

T 1
p S = {v ∈ TpS : ∥v∥g = 1}.

Liouville’s theorem (1838): mT 1S is invariant under (gt)t∈R, that is

mT 1S(gt(B)) = mT 1S(B) for any t ∈ R and any measurable B ⊂ T 1S .

Consequently, for any (measurable) observable f : T 1S → R, the stochas-
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The Gaussian curvature
Suppose S ⊂ R3. Fix a point p ∈ S and a unit vector −→n attached to p

and normal to S . For any plane Π ∋ −→n , the intersection Π∩S is a smooth

curve inside Π, having a well-defined signed curvature κ with respect to

its normal vector −→n . The principal curvatures κ1, κ2 of S at p are the

supremum and the infimum of all the curvatures obtained by varying Π.

The Gaussian curvature of S at p is the product K = κ1κ2.
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A negatively curved surface: the pseudosphere
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Ergodicity of the geodesic flow

Positive curvature makes nearby geodesics stay close throughout their evo-

lution, while negative curvature forces them to spread out. This lies at the

heart of the manifestation of randomness.

A first embodiment of randomness is ergodicity. If S has Gaussian cur-

vature K < 0, the geodesic flow (gt)t∈R is ergodic with respect to the

Liouville measure mT 1S :

for any B ⊂ T 1S , gt(B) = B ∀t ∈ R =⇒ mT 1S(B) ∈ {0, 1}.

This yields at once remarkable chaoticity features of geodesics: mT 1S -

almost surely, (forward) geodesic orbits equidistribute in the ambient space:

for any open V ⊂ T 1S ,

1

T
mR{0 ≤ t ≤ T : gtx ∈ V } T→+∞−→ mT 1S(V ) .
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A strong law of large numbers

Theorem (Birkhoff’s pointwise ergodic theorem)

If (ϕt)t∈R is a measure-preserving ergodic flow on a probability space

(X ,B, µ) and f : X → R is a µ-integrable function, then

lim
T→+∞

1

T

∫ T

0

f (ϕtx) dt =

∫
X

f dµ

for µ-almost every x ∈ X.

Equivalently: if (Xt)t≥0 is a stationary ergodic E -valued process, then a

SLLN holds for any statistic f : E → R with finite expectation:

1

T

∫ T

0

f (Xt) dt
T→∞−→ E[f (X0)] P-almost surely.
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A Central Limit Theorem?

Compared to the SLLN, the validity of a CLT is a more reliable detector

of independence, or rather weak dependence, for the process (f ◦ gt)t≥0.

In general, the CLT fails for ergodic systems.

Consider X = {0, 1}, ϕ : X → X defined by ϕ(0) = 1, ϕ(1) = 0, and

µ = 1
2 (δ0 + δ1); then ϕ is ergodic with respect to µ. However, for any

f : X → R with zero mean, the random variables 1√
N

∑N−1
n=0 f ◦ ϕn do not

converge in distribution towards a Gaussian random variable.

On the other hand, the abundance of possible correlation properties for

processes of the form (f ◦ ϕt)t accounts for the emergence of various

distributional behaviours in the limit.

Therefore, we need a general framework to study the limiting distributions

of ergodic integrals IT (f , x) =
1
T

∫ T

0
f (ϕtx) dt.
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Spatial distributional limit theorem

Definition (Spatial DLT)

Let (X ,B, µ, (ϕt)t∈R) be a measure-preserving flow. The ergodic

integrals of f ∈ L1(X ,B, µ) satisfy a spatial distributional limit theorem

if there exist real functions (AT ), (BT ), with BT → +∞ as T → +∞,

and a non-trivial real-valued random variable Y such that the random

variables YT = IT (f )−AT

BT
converge in distribution towards Y as T → +∞.

As it happens, the geodesic flow in negative curvature satisfies a rather

strong mixing property, resulting in a full analogue of the CLT:

Theorem (Sinai, Ratner)

Suppose S has negative Gaussian curvature. The ergodic integrals, along

the geodesic flow, of any smooth function f : T 1S → R not

cohomologous to a constant satisfy a spatial DLT. Specifically

IT (f )− T
∫
T 1M

f dmT 1S

σ
√
T

T→∞−→ N (0, 1) in distribution, for some σ > 0.
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Beyond Donsker’s invariance principle

We shall deduce the result from an almost sure invariance principle.

Recall Donsker’s invariance principle: if (Xi )i≥1 is a sequence of i.i.d. ran-

dom variables with zero mean and unit variance, then the processes (S
(n)
t )t≥0

given by S
(n)
t :=

∑
i≤nt Xi satisfy(

1√
n
S
(n)
t

)
0≤t≤1

n→∞−→ (Bt)0≤t≤1 in distribution,

where (Bt)t≥0 is a standard Brownian motion.

Attempts to extend this functional version of the CLT have permeated

much of the research in probability theory during the sixties.

In this regard, the notion of Almost Sure Invariance Principle (ASIP) has

been introduced by Strassen in the context of martingales, and later ex-

tended by Philipps and Stout to more general weakly dependent processes.

It formalizes the intuition that trajectories of certain random processes are

well approximable by Brownian trajectories.
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The Almost Sure Invariance Principle

In the setting of ergodic integrals, it may be phrased as follows:

Definition (Almost Sure Invariance Principle)

Let (X ,B, µ, (ϕt)t∈R) be a measure-preserving flow. The ergodic

integrals It(f ) of f ∈ L1(X ,B, µ) satisfy the Almost Sure Invariance

Principle if there is a probability space (Ω,F ,P), two processes

(I ′t )t≥0, (Bt)t≥0 defined on (Ω,F ,P) and σ > 0 such that:

1. (I ′t )t≥0 has the same law as (It(f ))t≥0;

2. (Bt)t≥0 is a standard Brownian motion;

3. for P-almost every ω ∈ Ω,

|I ′t (ω)− Bσ2t(ω)| = o(t1/2).

ASIP =⇒ Donsker’s IP
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Consequences of the ASIP

If the ergodic integrals of f fulfill the ASIP, then the processes (I
(n)
t (f ))t≥0

defined by I
(n)
t (f ) := Int(f ) satisfy(
1

σ
√
n
I
(n)
t (f )

)
0≤t≤1

n→∞−→ (Bt)0≤t≤1 in distribution,

As mentioned earlier, we have:

Theorem (Denker, Philipp)

If S has negative Gaussian curvature and f : T 1S → R is a smooth

function, not cohomologous to a constant, with
∫
T 1S

f dmT 1S = 0, then

the ergodic integrals of f along (gt)t∈R satisfy the ASIP.

As is well-known, the ASIP enables to transfer typical features of Brownian

trajectories to the process under consideration; in particular, asymptotic

fluctuation results, such as the Law of the Iterated Logarithm, carry over.
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Proof of the ASIP: an outline
The salient trait of the proof is the symbolic coding of the geodesic flow,

which allows to interpret it as a suspension flow over a Markov shift.
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Single-orbit dynamics: borrowing from number theory

All the results hitherto presented are quintessential probabilistic state-

ments: they capture properties of almost every trajectory.

In dynamical systems, and chiefly in applications towards geometric and

number-theoretical problems, it is often desirable to attain a qualitative

understanding of any orbit. Even though this turns out to be frequently

out of reach, a further shortfall of the spatial DLT is that it provides no

information on the behaviour of the functions t 7→ It(f , x), not even for

typical points x .

Number theorists have devised ingenious tools to describe the statistical

behaviour of highly oscillatory functions, as the It(f , x), t ∈ R, often are.

The archetypical result in this direction is a celebrated theorem of Erdös and

Kac, concerning the distribution of the arithmetic function ω : N≥1 → N,

ω(n) := number of distinct prime divisors of n.
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The Erdös-Kac theorem and the temporal DLT

Theorem (Erdös-Kac, 1939)

The random variables YN : {1, . . . ,N} → R defined as

YN(n) :=
ω(n)− log logN√

log logN
, 1 ≤ n ≤ N, n sampled uniformly,

converge in distribution towards N (0, 1) as N → ∞.

Motivated by this statement, we introduce a temporal version of the CLT:

Definition (Temporal DLT)

The ergodic integrals It(f , x) of an integrable function f satisfy a

temporal DLT along the orbit of x ∈ X if there is a non-trivial r.v. Y

and families of real numbers (AT (x)), (BT (x)) with BT (x)
T→∞−→ ∞ such

that XT (t) :=
It(f ,x)−AT (x)

BT (x)
converge in law towards Y as t ∼ U[0,T ].
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The Erdös-Kac theorem and the temporal DLT

Theorem (Erdös-Kac, 1939)

The random variables YN : {1, . . . ,N} → R defined as

YN(n) :=
ω(n)− log logN√

log logN
, 1 ≤ n ≤ N, n sampled uniformly,

converge in distribution towards N (0, 1) as N → ∞.

Motivated by this statement, we introduce a temporal version of the CLT:

Definition (Temporal DLT)

The ergodic integrals It(f , x) of an integrable function f satisfy a

temporal DLT along the orbit of x ∈ X if there is a non-trivial r.v. Y

and families of real numbers (AT (x)), (BT (x)) with BT (x)
T→∞−→ ∞ such

that XT (t) :=
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converge in law towards Y as t ∼ U[0,T ].
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ASIP and temporal DLT

The previous considerations readily allow to settle the question of existence

of a temporal DLT for ergodic integrals along the geodesic flow.

Indeed, the ASIP is incompatible with a temporal DLT. If the ergodic

integrals of f satisfy the ASIP, then the following holds µ-almost surely:

for any r.v. Y there is an increasing sequence (Tn)n∈N of times such that

1√
Tn

It(f , x)
n→∞−→ Y in law, as t ∼ U[0,Tn].

This stems from the analogous property of occupational (random) mea-

sures of Brownian paths: almost surely, the set of accumulation points of

the family 1
T

∫ T

0
δB(t) dt (for the weak topology on P(R)) is P(R).

Therefore:

ASIP =⇒ almost surely, no temporal DLT.

iPad di demetrio
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A much studied cousin: the horocycle flow

The geodesic flow in negative curvature belongs to the broad and nowadays

deeply understood class of Anosov flows, characterized by the property that

the flow, the expanded and the contracted direction “fill up” the whole

space. The ASIP (hence the spatial CLT) holds for any such flow.

Much less understood, as far as distributional limit theorems are concerned,

is a second flow of geometric nature which is closely intertwined with the

geodesic flow: it is known as the horocycle flow, and is defined precisely

for surfaces S with curvature K < 0.

Consider, for each x ∈ T 1S , the set (called stable manifold through x)

W s(x) := {y ∈ T 1S : d(gty , gtx)
t→+∞−→ 0},

where d is a (any) Riemannian metric on T 1S . We might choose an arc-

length parametrization t 7→ ht(x) of the differentiable curve W s(x). The

one-parameter continuous group (ht)t∈R is the horocycle flow on T 1S .
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Geodesic and horocycle orbits on the hyperbolic plane
For the sake of illustration, we consider the standard model of hyperbolic

geometry (K ≡ −1): the hyperbolic plane. As a smooth surface, it is the

upper-half plane H := {x + iy ∈ C : y > 0}; the Riemannian metric is

defined as gx+iy (v ,w) = 1
y2 ⟨v ,w⟩ for any v ,w ∈ Tx+iyH ≃ R2, so that

L(γ) =

∫ b

a

∥γ′(t)∥
Imγ(t)

dt for any curve γ : [a, b] → H of class C1.
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A fertile direction of research: horocycles and beyond

Asymptotic estimates for ergodic integrals along horocycle orbits are known

only in the case of constant negative curvature, where it is possible to resort

to the well-established harmonic analysis of the Lie group SL2(R).

▶ The spatial DLT is established only for a restricted class of smooth

functions; remarkably, the limit distribution is not Gaussian.

▶ For functions not in this distinguished class, there is strong evidence

pointing to a failure of the spatial DLT, but no proof is available.

▶ The temporal DLT holds almost surely for a vast class of functions,

and everywhere for windings determined by harmonic 1-forms.

Distributional limit theorems of various sorts are the subject of growing in-

terest in dynamics; inherently motivated by the quest for universal limiting

laws governing ergodic sums and integrals, they are part of a wholesale

attempt to account for, and quantify, the manifestation of randomness in

deterministic evolutions.
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